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Purpose

The purpose of this presentation is to describe the background 
and application of the concepts of Noise Figure and Noise 
Temperature for characterizing the fundamental limitations on 
the absolute sensitivity of receivers*.

* “Receivers” as used here, is general in sense and the concepts are 
equally applicable to the individual components in the receiver 
cascade, both active and passive, as well as to the entire receiver. 
These would then include, for example, amplifier stages, mixers,
filters, attenuators, circuit elements, and other incidental elements.
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Approach

• A step-by-step approach is taken to establish the basis, and concepts for the 
absolute characterization of the sensitivity of receivers, and to provide the 
foundation for a solid understanding and working knowledge of the subject.

• Signal quality in a system, as characterized by the signal-to-noise power ratio 
(S/N), is introduced, but shown to not be a unique characterization of the 
receiver alone. 

• The origin of the major components of receiver noise and their characteristics 
are then summarized

• Noise Figure, F, is introduced which uniquely characterizes the degradation of 
S/N in a receiver. 

• The precise definitions of Noise Figure and of its component parts are presented 
and illustrated with models and examples to provide valuable insight into the 
concepts and applications.

• The formulation for the Noise Figure of a cascade of devices is derived and 
illustrated by examples.
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Approach (Cont’d)

• The concept of Noise Temperature, Te, is introduced and is shown to be 
directly derivable from Noise Figure.

• Te is shown to be a more concise characterization of the receiver alone, by 
completely eliminating source noise from the equation. 

• Its application is illustrated by examples. 
• The basic methods of measurement of Noise Figure and Noise 

Temperature are described and compared.
• Finally, a Summary reviews the material presented, and recommendations 

are provided for further study.
• References are provided
• An annotated bibliography follows that is intended to serve as a basis for 

further study 
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Introduction

Signal/Noise (S/N) Characterization

• Introduction of vacuum tube amplifier
– Discovered there are limits on achievable signal sensitivity

• Achievable signal sensitivity in a Communication, Radar, or EW receiving 
system is always limited ambient noise along with the output signal

• Signal quality is characterized by the final output Signal/Noise (S/N) ratio
– Depending on application, S/N of at least 10 or 20 dB, or more, may be 

required
– S/N at the input of a receiver is the best it will be
– Each component in the receiver cascade, while performing its intended 

function, degrades the output S/N
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Introduction (Cont’d)

Factors Affecting System S/N

• In a communication system, S/N is a function of:
– Transmitter output power
– Gain of Transmit and Receive antennas
– Path loss
– Receiver noise - the topic of this presentation

• To characterize the receiver alone, Friis(1) introduced Noise Figure which 
characterized the degradation in S/N by the receiver. 
– Noise Figure of a receiver is the ratio of the S/N at its input to the S/N at 

its output
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Receiver Noise Summary (Cont’d)
Thermal Noise(2,3)

• Thermal noise (Johnson Noise) exists in all resistors and results from the 
thermal agitation of free electrons therein
– The noise is white noise (flat with frequency)
– The power level of the noise is directly proportional to the absolute 

temperature of the resistor 
– The level is precisely en

2=4kTRB (V2), or 4kTR (V2/Hz)
• Where, 

– k is Boltzman’s constant =1.38x10-23 Joules/ºK
– T is the absolute temperature of the resistor in ºK
– R is the value of the resistance in Ohms
– B is the effective noise bandwidth

– The available noise power is en
2/4R = kTB

– At T=TO=290ºK (the standard for the definition of Noise Figure), kTOB= 
4.00x10-21 W/Hz (= -204.0 dBW/Hz= -174.0 dBm/Hz = -114.0 dBm/MHz)

Thermal noise in the resistance of the signal source is the fundamental 
limit on achievable signal sensitivity
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Receiver Noise Summary (Cont’d)

Shot Noise(4,7)

• Shot Noise was studied by Schottky, who likened it to shot hitting a target
– Results from the fluctuations in electrical currents, due to the random 

passage of discrete electrical charges through the potential barriers in 
vacuum tubes and P-N junctions

– Its noise characteristic is white
– The power level of the noise is proportional to the level of the current 

through the barrier
– In vacuum tube diodes, in temperature-limited operation, shot noise is 

precisely, in2(f)= 2eIO(A2/Hz), where IO is the diode current and e is the 
electronic charge = 1.6x10-19 Coulombs

– Vacuum tube diodes, in temperature-limited operation, were the first 
broadband noise sources for measurement of receiver noise figure.
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Receiver Noise Summary (Cont’d)

Flicker (1/f) Noise(4,7)

• Flicker Noise appears in vacuum tubes and semiconductor devices at very 
low frequencies

– Its origin is believed to be attributable to contaminants and defects in the crystal 
structure in semiconductors, and in the oxide coating on the cathode of vacuum 
tube devices

– Commonly referred to as 1/f noise because of its low-frequency variation
– Its spectrum rises above the shot noise level below a corner frequency, fL, which 

is dependent on the type of device and varies from a few Hz for some bipolar 
devices to 100 MHz for GaAs FETs
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Receiver Noise Summary (Cont’d)
Comparison of Levels of Major Components of Receiver Noise

1

10

100

1000

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Frequency (Hz)

M
ea

n 
S

qu
ar

e 
N

oi
se

 V
ol

ta
ge

(V
2 )

Jitter
HF Bipolar

Jitter
MOSFET

Jitter
GaAsFET

Thermal Noise, 290ºK, 50 Ohms: 8x10-19 V2/Hz

Shot Noise, IDC = 0.01A, Voltage across 50 Ohms: 8x10-18 V2/Hz

Jitter
Precision Bipolar



© R. J. Mohr Associates, Inc. 
January 2006

11

Noise Figure, F
Definition*(1)
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•F is the Noise Figure of the receiver
•Si is the available signal power at the input
•SO is the available signal power at the output
•Ni = kTOB is the available noise power at the input
•TO is the absolute temperature of the source resistance, 290 ºK
•NO is the available noise power at the output, and includes amplified input noise 
•NR is the noise added by the receiver
•G is the available gain of the receiver
•B is the effective noise bandwidth of the receiver

*The unique and very precise definition of Noise Figure and its component parts makes provision for a degree of mismatch between
component parts of a receiver chain which is often necessary for minimum Noise Figure
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Noise Figure

What level of input signal, Si, is required for an output SO/NO = 10 dB in a
receiver with NF= 6 dB, and B=0.1 MHz?

• From definition of F:

• Input sensitivity is evaluated by referring the output noise, NO, to the 
receiver’s input, i.e.

• NOi(dBm) = NF(dB)+KTO(dBm/MHz)+10 Log B(MHz) = 6 -114-10 = -118 
dBm

• For a desired SO/NO of 10 dB, Si must be at least: 
Si =-118 dBm+10 dB = -108 dBm
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Example, Relating Noise Figure to Sensitivity
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Definition of Factors in Noise Figure
Available Input Signal Power (Si)

• Si is the signal power that would be extracted from a signal source by a load 
conjugately* matched to the output of the source i.e.:

S

S
i R

ES
4

2

=
ES

RS

• Si is dependent only on the characteristics of the source, specifically it is 
independent of the impedance of the actual load, RL.

• For a load, RL ≠ RS, the delivered power is less than the available power, but 
the available power is still Si.

* For simplicity and without loss of illustrative value, ideal transformers and 
reactive elements are not included in models here since they are loss-free 
and do not directly contribute to receiver Noise Figure
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Definition of Factors in Noise Figure (Cont’d)
Available Output Signal Power, SO

• SO is the power that would be extracted by a load conjugately 
matched to the output of the network, i.e.:

NetworkES

RS

O

OC
O R

ES
4

2

=RO
EOC

• SO is dependent only on the characteristics of the network and its signal 
source, and the impedance match at its input 

• SO is independent of the actual load, RL, on the network
– For a load, RL = RO, the delivered power will equal the available output 

power, SO
– for RL≠ RO the delivered power will be less than the available output power,

but the available output power is still SO
– Available output is maximum achievable when input is matched to RS
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Definition of Factors in Noise Figure (Cont’d)

Available Gain*, G

i

O
S

SG =

• Definition is applicable to both active and passive devices
• G is independent of impedance match at output
• G is dependent on impedance match at the input
• In general, G is:

– Less than, or equal to, the maximum available gain 
– Equal to the maximum available gain when source is matched to the input
– Greater than, or equal to, the insertion gain
– May be less than, greater than, or equal to, one (unity)

*When used herein, G will always refer to the available gain



© R. J. Mohr Associates, Inc. 
January 2006

16

Definition of Factors in Noise Figure (Cont’d)
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Available Gains Of Elementary Networks

The gains of the resistor networks  are less than one (1), and are often expressed
instead as a power loss ratio, L =1/G,  which is then  >1; only G will be used here.
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Definition of Factors in Noise Figure (Cont’d)

Resistor L-Section Network

Available Gains Of Elementary Networks (Cont’d)
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and RS) and the shunt section (R2 in parallel with series connection of RS and R1)
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Definition of Factors in Noise Figure (Cont’d)
Available Gains Of Elementary Networks (Cont’d)

2-Port Network
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Network
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Where:
� ΓS is the reflection coefficient of RS relative to the input characteristic 

impedance of the network
• GM is the maximum available gain of the network, i.e. the available gain with a 

matched input, ΓS = 0
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Definition of Factors in Noise Figure (Cont’d)
Effective Noise Bandwidth, B

• Noise bandwidth, B, is defined as the equivalent rectangular pass band that 
passes the same amount of noise power as is passed in the usable receiver 
band, and that has the same peak in-band gain as the actual device has. It 
is the same as the integral of the gain of the device over the usable 
frequency band , i.e.:

∫
∞

=
0

)( df
G

fGB
O

Where:
• B is the effective noise bandwidth
• G(f) is the gain as a function of frequency over the usable frequency band
• GO is the peak value of in-band gain

Typically, B is approximately equal to the 3 dB bandwidth.
For greatest sensitivity, B should be no greater than required for the information 

bandwidth.
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Definition of Factors in Noise Figure (Cont’d)
Available Input Noise

• Input noise, Ni, is defined as the thermal noise (Johnson Noise(2)) generated 
in the resistance of the signal source

• The input mean-square noise voltage is expressed concisely as(3): 

Where
– eni

2 is the mean-square noise voltage of  the Thevinin voltage source, in V2/Hz
– K is Boltzman’s constant = 1.38x10-23 Joules/ºK
– T is the absolute temperature of the resistor in ºK
– In noise figure analysis, standard temperature is TO=290ºK
– R is the resistance, in Ohms
– B is the effective noise bandwidth

• The available noise power, Ni (W), from the resistor is:

• With TO at 290ºK, Ni=4.00x10-21 W/Hz =  -204.0 dBW/Hz = 
-174.0dBm/Hz = -114.0 dBm/MHz

RBkTe Oin 42 =

BkT
R
RBkTN O

O
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Thermal Noise Models (Cont’d)

• Where:
– en

2 is the mean-square noise voltage of the Thevinin voltage source, in V2/Hz
– in2 is the mean-square noise current of the  Norton current source, in A2/Hz
– K is Boltzman’s constant = 1.38x10-23 Joules/ºK
– T is the absolute temperature of the resistor in ºK

• In noise figure analysis, standard temperature is TO=290ºK
– R is the value of the resistance, in Ohms
– g is the value of the conductance, in mhos
– B is the effective noise bandwidth, in Hz
– N is the available noise power, in W 
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Definition of Factors in Noise Figure (Cont’d)
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Definition of Factors in Noise Figure (Cont’d)
Thermal Noise Models (Cont’d)

Will network of resistors provide more noise power than kTB?

Series Voltage Model Shunt Current Model
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Available noise power from network of resistors at T is still just kTB
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Thermal Noise Models (Cont’d)

Series resistors at different temperatures

Definition of Factors in Noise Figure (Cont’d)
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• When T1 = T2, the second term in N1-2 disappears and N1-2 = kT2B
• When T1≠T2, the term k(T1-T2)B may be considered the excess available 

noise power of the source resistor, R1.  
• For noise calculations, the excess available noise power may be treated as 

though it was signal
• The excess noise power is then attenuated by the term , R1/(R1+R2), which 

is recognized as the gain of the series resistor, and the attenuated result 
adds to the kT2B, power at the output*

*When T1<T2, then N1-2<kT2B
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Noise Figure Of Elementary Networks

Optimum Source Impedance for Minimum Noise Figure

• Each component in a receiver cascade can be characterized by an 
available Noise Figure (F) and available gain (G)

• The available noise figure of each component is dependent only on 
its source impedance within the receiver chain

• Every component having a noise figure has an optimum noise figure 
which is achieved when it is supplied from its optimum source 
impedance

• The optimum source impedance for components is not always the 
same as required for maximum gain, and so there will be an 
“optimum input mismatch”
– In such cases, although the operational available output signal is 

reduced, the available output noise is reduced proportionally more
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Noise Figure Of Elementary Networks (Cont’d)
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Noise Figure Of Elementary Networks (Cont’d) 

Attenuators, Lossy Line Sections
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By inspection, F is least when G is greatest (RS is matched to the 
characteristic input impedance of the network ΓS =0 )
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Noise Figure Of Elementary Networks (Cont’d) 
Active Devices

Simplified noise model for active devices references all noise sources to input
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Noise Figure Of Elementary Networks (Cont’d) 

Example, Active Device

Find optimum noise figure and required source impedance for amplifier with 
input voltage and current noise sources for the amplifier specified as: 
en
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in2=4x10-23 A2/Hz
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Cascade Formula for Noise Figure
Noise Figure, F for cascade of 2 or more devices
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Cascade Formula for Noise Figure (Cont’d)
Optimization Example

In the example on Slide 28, it was determined that the amplifier has an 
optimum noise figure, NF, of  3 dB when operated from a source impedance 
of 200 Ohms. When operating from a source of 50 Ohms, what is the best 
way to optimize for best noise figure? Using the cascade approach, the 
analyses below illustrate two optimization approaches. Which is best? 

Optimize with series 150 Ohm resistor Optimize with input step-up transformer
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Resistors in input matching networks adversely impact noise figure!
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Cascade Formula for Noise Figure (Cont’d)
Example, Receiver Cascade

      (7)        (6)         (5)       (4)        (3)        (2)        (1)  
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System Noise Temperature Formulations 

Derivation

In low-noise systems and with low source temperature, TS<<TO, 
treatment in terms of noise temperature(7), rather than noise figure, 
is frequently preferred.  Derivation follows. 

•Output noise power level, NO, for system operating from source at TO is:
NO=FGkTOB=GkTOB+(F-1)GkTOB

•With a source temperature at TS,
NO=GkTSB+(F-1)GkTOB=GkB(TS+Te)

•Where Te =(F-1)TO is defined as the effective input noise temperature of 
the receiver*.
•The total equivalent noise temperature of the system referenced to its 
input terminals is TSYS=TS+Te.

*Te is more concise than F in defining the noise performance of a receiver 
in that it is independent of source temperature.
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System Noise Temperature Formulations, (Cont’d) 

System Sensitivity Analysis Using Noise Temperature

Signal source is antenna, pointed at sky with effective temperature, 
Ta=30ºK. Receiver system noise figure is NF=0.5dB, F=1.122:1.

• The equivalent noise temperature of the receiver is:
– Te=(1.22-1)290=35.4ºK

• Therefore effective system noise temperature is:
TSYS=Ta+Te=(30+35.4)=65.4 ºK

• Equivalent input system noise is*: 
NS= -174(dBm/Hz)+10 log(65.4/290)= -180.5 dBm/Hz

*The term: -174(dBm/Hz) is the thermal level for 290ºK; 
the term: +10 log(65.4/290), corrects for a system noise 
temperature of 65.4 ºK
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System Noise Temperature Formulations (Cont’d) 
Cascade Formulation

For cascade of n devices the noise temperature of the cascade is,
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System Noise Temperature Formulations (Cont’d)
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Measurement of Noise Figure
Signal Generator Method(5,7)

Signal
Generator

Power
Meter

DUT

Procedure
•Tune Signal generator over frequency to measure output variation of power
•From data, determine B (Slide 22)
•Turn signal generator off, and note output noise power level, NO=FGkTOB
•Turn signal generator on and tune to frequency of maximum G; adjust its 
level to Si to just double output indication, to 2 NO
•Then GSi=FGkTOB, and F=Si/kTOB
•NF(dB)=Si(dBm)+114-10 log B(MHz)
Example
B=0.5 MHz, (-3 dB MHz)
Si=-90 dBm
Therefore: NF(dB)=-90+114-(-3)=27 dB
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Measurement of Noise Figure (Cont’d)
Calibrated Noise Source Method (Y Factor)(7)

Calibrated
TH, TC Source

Power
Meter

DUT

kTHB
kTCB
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Example:
TH=10,290ºK (argon source), TC=300ºK
Measured Y factor: Y=9 dB (7.94:1)
Then, 
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Measurement of Noise Figure (Cont’d)

Comparison of Measurement Methods

Capabilities of available noise 
sources don’t allow measurement 
of devices with high noise figure

Requires correction for presence 
of out-of-band responses

Requires separate measurement 
of B

Not easily adaptable to automatic 
measurements

Disadvantages

Does not require separate 
determination of B

Measurement is simple and 
straight-forward 

Lends itself to automatic 
measurements

Accurate results even with 
significant out-of-band responses

Useful for measurement of 
devices with high noise figure

Advantages
Noise Source MethodSignal Generator Method
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Presentation Summary

• The background and application of the concepts of Noise Figure and Noise 
Temperature for characterizing the fundamental limitations on the absolute 
sensitivity of receivers were set forth in a step-by step approach and illustrated 
with examples to provide insight into the concepts.

• The origin of the major components of receiver noise, and their characteristics 
were summarized.

• Sample Noise Figure and Noise Temperature analyses of receiver systems were 
illustrated.

• The basic methods of measurement of Noise Figure and Noise Temperature 
were described and compared.

• References and a Bibliography follow. The Bibliography is intended to serve 
as a basis for further study.
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The following 5 Agilent Application Notes are highly recommended for study and 
reference. Together, they provide excellent material on noise figure and noise 
temperature.  They progress from the background of noise and receiver sensitivity, 
through a summary of computer-aided design of amplifiers for optimum noise figure, 
description of measurement setups and techniques, including analysis of 
measurement uncertainty. They include comprehensive lists of references. They can 
be ordered from the Agilent web site. 

•Fundamentals of RF and Microwave Noise Figure Measurements, Application Note 
57-1
•Noise Figure Measurement Accuracy- The Y-Factor Method, Application Note 57-2
•10 Hints for Making Successful Noise Figure Measurements, Application Note 57-3
•Noise Figure Measurement of Frequency Converting Devices, Using the Agilent 
NFA Series Noise Figure Analyzer, Application Note 1487
•Practical Noise-Figure Measurement and Analysis for Low-Noise Amplifier Designs, 
Application Note 1354.
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Text Books
van der Ziel, Aldert. Noise: Sources, Characterization, Measurement, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1970.-Everything you ever wanted to 
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stages
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were proportional to the magnitude of the Ohmic value of its resistance and to its 
absolute temperature.  The noise voltage is referred to as “Johnson noise” in his 
honor.  

•Nyquist, H. Thermal Agitation of Electric Charge in Conductors, Physical Review, 
July, 1928, pp. 110-113.  This is the classic paper companion paper to the Johnson 
Paper which related the Johnson noise to the fundamental laws of thermodynamics 
and arrived at the famous, KTB

•Friis, H.T., Noise Figures of Radio Receivers, Proc. Of the IRE, July, 1944, pp 419-
422.  This is the classic paper on Noise Figure.  It should be reviewed as an 
excellent example of a concise presentation of an important concept.
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amplifier configurations.  The paper’s approach served as a model for this 
presentation.
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figure and its measurement.  It includes detail of automatic measurement 
setups and of available test equipment.  The presentation is available on the 
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summary on thermal, shot, and jitter noise.
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