MCS 2000 Mobile Radio Service Instructions

Volume 2a

800-MHz Frequency Range Specific

Safety Information

Every radio, when transmitting, radiates energy into the atmosphere which may, under certain conditions, cause the generation of a spark.

All users of vehicles fitted with radios should be aware of the following warnings:

Do not operate radio near flammable liquids or in the vicinity of explosive devices.

To ensure personal safety, please observe the following simple rules:
Check the laws and regulations on the use of two-way mobile radios in the areas where you drive. Always obey them. Also, when using your radio while driving, please:

- Give full attention to driving,
- Use hands-free operation, if available and
- Pull off the road and park before making or answering a call if driving conditions so require.

Airbag
 Warning

VEHICLES EQUIPPED WITH AIR BAGS

An air bag inflates with great force. DO NOT place objects, including communication equipment, in the area over the air bag or in the air bag deployment area. If the communication equipment is improperly installed and the air bag inflates, this could cause serious injury.

Installation of vehicle communication equipment should be performed by a professional installer/technician qualified in the requirements for such installations.

An air bag's size, shape and deployment area can vary by vehicle make, model and front compartment configuration (e.g., bench seat vs. bucket seats). Contact the vehicle manufacturer's corporate headquarters, if necessary, for specific air bag information for the vehicle make, model and front compartment configuration involved in your communication equipment installation.

LP Gas Warning

 It is mandatory that radios installed in vehicles fuelled by liquefied petroleum gas conform to the National Fire Protection Association standard NFPA 58, which applies to vehicles with aliquid propane(LP) gas container in the trunk or other sealed off space within the interior of the vehicle. The NFPA58 requires the following:- Any space containing radio equipment shall be isolated by a seal from the
space in which the LP gas container and its fittings are located.
- Removable (outside) filling connections shall be used.
- The container space shall be vented to the outside.

Anti-Lock Braking System (ABS) and Anti-Skid Braking System Precautions

WARNING

Disruption of the anti-skid/ anti-lock braking system by the radio transmitter may result in unexpected vehicle motion.

Motorola recommends the following radio installation precautions and vehicle braking system test procedures to ensure that the radio, when transmitting, does not interfere with operation of the vehicle braking system.

1. Always provide as much distance as possible between braking modulator unit and radio, and between braking modulator unit and radio antenna and associated antenna transmission line. Before installing radio, determine location of braking modulator unit in vehicle. Depending on make and model of vehicle, braking modulator unit may be located in trunk, under dashboard, in engine compartment, or in some other cargo area. If you cannot determine location of braking modulator unit, refer to vehicle service manual or contact a dealer for the particular make of vehicle.
2. If braking modulator unit is located on left side of the vehicle, install radio on right side of vehicle, and conversely.
3. Route all radio wiring including antenna transmission line as far away as possible from braking modulator unit and associated braking system wiring.
4. Never activate radio transmitter while vehicle is in motion and vehicle trunk lid is open.

Braking System Tests

The following procedure checks for the most common types of interference that may be caused to vehicle braking system by a radio transmitter.

1. Run vehicle engine at idle speed and set vehicle transmission selector to PARK. Release brake pedal completely and key radio transmitter. Verify that there are no unusual effects (visual or audible) to vehicle lights or other electrical equipment and accessories while microphone is NOT being spoken into.
2. Repeat step 1. except do so while microphone IS being spoken into.
3. Press vehicle brake pedal slightly just enough to light vehicle brake light(s). Then repeat step 1 . and step 2.
4. Press the vehicle brake pedal firmly and repeat step 1. and step 2.
5. Ensure that there is a minimum of two vehicle lengths between front of vehicle and any object in vehicle's forward path. Then, set vehicle
transmission selector to DRIVE. Press brake pedal just far enough to stop vehicle motion completely. Key radio transmitter. Verify that vehicle does not start to move while microphone is NOT being spoken into.
6. Repeat step 5. except do so while microphone IS being spoken into.
7. Release brake pedal completely and accelerate vehicle to a speed between 15 and 25 miles/ 25 and 40 kilometers per hour. Ensure that a minimum of two vehicle lengths is maintained between front of vehicle and any object in vehicle's forward path. Have another person key radio transmitter and verify that vehicle can be braked normally to a moderate stop while microphone is NOT being spoken into.
8. Repeat step 7. except do so while microphone IS being spoken into.
9. Release brake pedal completely and accelerate vehicle to a speed of 20 miles/30 kilometers per hour. Ensure that a minimum of two vehicle lengths is maintained between front of vehicle and any object in vehicle's forward path. Have another person key radio transmitter and verify that vehicle can be braked properly to a sudden (panic) stop while microphone is NOT being spoken into.
10. Repeat step 9. except do so while microphone IS being spoken into.
11. Repeat step 9. and step 10. except use a vehicle speed of 30 miles/50 kilometers per hour.

MCS 2000 Mobile Radio Service Instructions			
Volume 2a			
800-M Hz Frequency Range Specific Information			
M otorola Publication Number 68P81080C43-C			
Issue Dates of Original and Revised Pages are:			
Revision O: November1995 Revision A: November 1996 Revision B: September 1997 Revision C: July 1998			
The Number of pages in this publication is $\mathbf{1 0 2}$ consisting of the following:			
Page Number	Revision Letter	Page Number	Revision Letter
Front cover	0	1 through 88	C
Inside front cover (blank)	0	Questionnaire (Front)	0
Title	C	Questionnaire (Back)	0
Safety 0 through Safety 2	C	Inside Back Cover (Replacement Parts Ordering)	C
A and B	C	Back Cover (Not Marked with Revision Letter	A
i and ii	C		
Note: The letter O in the Revision Letter column of the table above denotes an original page. Original pages ARE NOT identified as such in the page footors except by the absence of a change letter and date.			

NOTES

Table of Contents

- Safety Information Safety 0
- List of Effective Pages A
- List of Figures ii
- List of Tables. ii
1- Introduction 1
2- Theory of Operation 5
Introduction 5
Block Diagram Level Theory of Operation 6
Receiver Detailed Functional Description 9
Transmitter Detailed Functional Description 11
Synthesizer Detailed Functional Description 14
Controller Detailed Functional Description. 16
Dc Power Control and Regulation Detailed Functional Description. 16
3 - Troubleshooting and Repair 17
4 - Reference Drawings 31

List of Figures

Figure 1. $800-\mathrm{MHz}$ Radio Functional Block Diagram . 7
Figure 2. Transceiver Board Section Locations . 32

Note: Troubleshooting charts are listed on page 17; Component location, schematic diagram, and parts list illustrations are listed on page 31.

Introduction

This publication (Service Manual Volume 2a, M otorola Publication 68P81080C43) provides frequency-range-specific information for the $15-\mathrm{W}$ att and 35-W att M CS2000 radios for which thetransceiver board kit numbers are listed in Table 1. These radios operate in the $800-\mathrm{MHz}$ frequency range. The coverage in this publication includes non-datacapable and data-capable radios.

This publication is a companion volume to Service M anual Volume 1 for MCS 2000 Radios, M otorola Publication Number 68P81083C20, which provides non-frequency-range-specific information for all MCS 2000 Radios. Service personnel must have both Volume 1 and Volume $2 d$ of this Service Manual in order to have all service information for $15-\mathrm{W}$ att and $35-\mathrm{W}$ att MCS 2000 Radios that operate in the $800-\mathrm{M} \mathrm{Hz}$ frequency range.

There are other Volume 2 service manuals (e.g., Volume 2b, 2c, 2d,), which cover models of the MCS2000 Radio for other frequency ranges and power levels. Refer to Volume 1 of this service manual for a list of themanuals related to operation and maintenance of all models of the MCS 2000 Radio, and the M otorola publication numbers for those manuals.

Hereafter in this manual, the MCS 2000 Radio is referred to as the radio. The specific hardware portions of the radio covered in this volume of the service manual are as follows:

- Receiver Front End
- Receiver Intermediate Frequency (IF)
- Receiver Back End
- 15-W att Power Amplifier
- 35-Watt Power Amplifier
- Synthesizer

This volume (Volume 2a) of the service manual covers the following five topics for the specific hardware portions of the $800-\mathrm{MHz}$ radios:

- Theory of operation
- Troubleshooting
- Component locations
- Partslists
- Schematic diagrams and associated interconnect information

The five topics listed above for the controller section and for the control heads are covered in Volume 1 of this service manual, Motorola Publication Number 68P81083C20.

All the radios covered in this service manual contain a single circuit card assembly (a printed circuit board with components mounted), which is called the transceiver board. The transceiver board in each version of the radio is identified by a unique M otorola kit number (e.g., FLF5579C). The kit number varies according to the RF output power level of the radio ($15-\mathrm{W}$ atts or $35-\mathrm{W}$ atts) and al so according to whether or not the radio is data capable. Table 1 crossreferences each kit number covered in this service manual to the page number where the specified information is located.

Table 1: Transceiver Board Kit Numbers v.s. Service Manual Page Numbers for Specific Information

KitNumber	RF Power Level	Printed Circuit Board (PCB)		Functional Sections Interconnection Information	Controller		Receiver Front End (Page No.)				Receiver Intermediate Frequency (IF) (Page No.)			
		Part No.	Functional Section Locations (Page No.)		Main Controller Section	Power Control Section	Theory of Operation	Trouble shooting Chart	Component Locations and Parts List	Schematic Diagram	Theory of Operation	Trouble shooting Chart	Component Locations and Parts List	Schematic Diagram
FLF5579C, D, E Not Data Capable	15	8404416P04 Issue P4	32	57	Refer to Service Manual Volume 1 Motorola Publication 68P81083C20	Refer to Service Manual Volume 1 Motorola Publication 68P81083C20	9	23	34	35	9	24	36	37
FLF5574D, E, F Not Data Capable	35	$\begin{gathered} \text { 8404994E05 } \\ \text { Issue P5 } \end{gathered}$	32	57			9	23	34	35	9	24	36	37
FLF5600A Data Capable	15	$\begin{aligned} & \text { 8404416P05 } \\ & \text { Issue P5 } \end{aligned}$	32	57			9	23	34	35	9	24	36	37
FLF5950A Data Capable	15	$\begin{aligned} & \text { 8408497Y01 } \\ & \text { Issue P1 } \end{aligned}$	32	57			9	23	34	35	9	24	38	39
FLF5607A Data Capable	35	$\begin{gathered} \text { 8408537Y01 } \\ \text { Issue P1 } \end{gathered}$	32	57			9	23	34	35	9	24	38	39
HUF1188A Data Capable	15	$\begin{aligned} & \text { 8404416P05 } \\ & \text { Issue P5 } \end{aligned}$	32	57			9	23	34	35	9	24	36	37
HUF1189A Not Data Capable	35	$\begin{gathered} \text { 8404994E05 } \\ \text { Issue P5 } \end{gathered}$	32	57			9	23	34	35	9	24	36	37

Table 1: Transceiver Board Kit Numbers v.s. Service Manual Page Numbers for Specific Information (Continued)

Kit Number	RF Power Level	Printed Circuit Board (PCB) Part No.	Receiver Back End (Page No.)				Synthesizer (Page No.)				Power Amplifier (PA) (Page No.)				
			Theory of Operation	Trouble shooting Chart	Parts List and Component Locations	Schematic Diagram	Theory of Operation	Trouble shooting Chart	Parts List and Component Locations	Schematic Diagram	Theory of Operation	Trouble shooting Chart	Repair	Parts List and Component Locations	Schematic Diagram
FLF5579C, D, E Not Data Capable	15	$\begin{gathered} \text { 8404416P04 } \\ \text { Issue P4 } \end{gathered}$	10	24	40	41	14	28	54	55	11	30	N/A	46	47
FLF5574D, E, F Not Data Capable	35	$\begin{aligned} & \text { 8404994E05 } \\ & \text { Issue P5 } \end{aligned}$	10	24	40	41	14	28	54	55	13	31	18	50	51
FLF5600A Data Capable	15	$\begin{gathered} \text { 8404416P05 } \\ \text { Issue P5 } \end{gathered}$	10	24	42	43	14	28	54	55	11	30	N/A	46	47
FLF5950A Data Capable	15	$\begin{aligned} & \text { 8408497Y01 } \\ & \text { Issue P1 } \end{aligned}$	10	24	44	45	14	28	54	55	11	30	N/A	48	49
FLF5607A Data Capable	35	$\begin{aligned} & \text { 8408537Y01 } \\ & \text { Issue P1 } \end{aligned}$	10	24	44	45	14	28	54	55	13	31	18	52	53
HUF1188A Data Capable	15	$\begin{gathered} \text { 8404416P05 } \\ \text { Issue P5 } \end{gathered}$	10	24	42	43	14	28	54	55	11	30	N/A	46	47
HUF1189A Not Data Capable	35	$\begin{gathered} \text { 8404994E05 } \\ \text { Issue P5 } \end{gathered}$	10	24	40	41	14	28	54	55	13	31	18	50	51

Theory of Operation

This chapter provides theory of operation information for the radio. It starts with a block diagram level functional description of the entire radio. This is followed by a detailed functional description for each of the four major functions of the radio.

Introduction

The radio is composed of the following four major functions:

- Receiver
- Transmitter
- Dc Power Control and Regulation
- Operator Interface (Control Head)

The receiver, transmitter, and dc power control and regulation functions are all located on a single circuit card assembly (CCA) in the main body of the radio. The CCA is called the transceiver board. The operator interface function consists of the control head, which plugs into the main body of the radio. There arethree different control head types: the M odel I for the M odel I Radio; the Model II for the M odel II Radio; and the M odel III for the Model III Radio. The three control heads are covered in their entirety in Volume 1 of this service manual.

The transceiver board in the main body of the radio is physically separated into six functional sections as follows:

- Receiver Front End
- Receiver Intermediate Frequency (IF)
- Receiver Back End
- Power Amplifier (PA)
- Synthesizer
- Controller

The controller section is further divided into two sub-sections: main controller; and power control. The mechanical layout of the transceiver board is illustrated in Chapter 4.

Separate component location diagrams, parts lists, and schematic diagrams are provided in this service manual for each of the six physical sections of the transceiver board and for the control heads.

The component location diagrams, parts lists, and schematic diagrams for the controller section of the transceiver board and for the three types of control heads are located in Volume 1 of this service manual. The component location diagrams, partslists, and schematic diagrams for the other five physical sections of the transceiver board are located in this volume (Volume 2a).

Block Diagram Level Theory of Operation

Thefollowing discussion refers to thefunctional block diagram for the radio, Figure 1.

The receiver function of the radio detects, demodulates, amplifies, and outputs via the loudspeaker, radio signals picked up by the vehicle or fixed-station antenna. The radio signal input reaches the receiver from the antenna via the antenna switch, which is located in the transmitter function of the radio. The radio signals picked up by the antenna are signals that have been re-broadcast by trunked or conventional repeaters, or that have been broadcast directly by other mobile or fixed station radios.

The receiver function of the radio consists of: the receiver front end section; the receiver intermediate frequency (IF) amplifier section; the receiver back end section; and the audio signal filter (ASFIC) and receiver audio power amplifier circuits in the controller section.

The receiver function of the radio uses the double conversion superheterodyne design to optimize image rejection and selectivity. The receiver front end section converts the receiver input signal to a first IF of 73.35 MHz . The frequency upon which the receiver operates is determined by a first local oscillator signal generated by the synthesizer section. For the purpose of this discussion, the synthesizer section is considered to be part of the transmitter function of the radio.

The 73.35 M Hz IF output signal from the receiver front end section passes through the receiver IF amplifier section where it is filtered and amplified. The output of the receiver IF amplifier section goes to the receiver back end section. In the receiver back end section, which contains the zero intermediate frequency (ZIF) integrated circuit (IC), the receiver IF signal is demodulated to produce receiver audio and squelch signals.

The receiver audio and squelch signal outputs from the receiver back end section are processed by the audio signal filter integrated circuit (ASFIC) in the controller section of the radio to generate receiver audio (filtered) and squelch detect signals. The filtering characteristics and other processes of the ASFIC are controlled by the central processor unit in the controller section.

The receiver audio signal (filtered) from the output of the ASFIC goes to the input of the receiver audio power amplifier circuit, which is located in the controller section of the radio. The receiver audio power amplifier circuit does not pass the receiver audio signal to the loudspeaker until it receives an audio PA enable signal from the controller section of the radio. The reason is that the receiver portion of the radio includes a squelch function, which prevents receiver noise from passing to the loudspeaker during periods of no signal reception.

Figure 1. $800-\mathrm{MHz}$ Radio Functional Block Diagram

The controller generates the audio PA enable signal based on such variables as the level of the received signal, the frequency channel, and the operating mode of the radio. When the audio PA enable signal is generated, the audio power amplifier (PA) is activated and passes the receiver audio signal to the loudspeaker.

The transmitter function of the radio produces either a $15-\mathrm{W}$ att or a 35-W att radio frequency output signal, depending on themodel of the radio. The radio frequency output signal is frequency modulated by an audio signal from the microphone or from another source such as a telephone keypad or handset.

Thetransmitter function of the radio consists of: the audio signal filter integrated circuit (ASFIC) in the controller section; the synthesizer section; and the transmitter power amplifier (PA) section. The ASFIC develops a modulation signal by amplifying an audio signal from the microphone, keypad, or handset. The synthesizer section generates a radio frequency carrier signal upon which the transmitter portion of the radio operates. The radio frequency carrier signal generated by the synthesizer section is frequency modulated in the synthesizer section by the modulation signal output from the ASFIC.

The frequency modulated output signal from the synthesizer section is amplified to the required $15-\mathrm{W}$ att or $35-\mathrm{W}$ att power level by the power amplifier (PA) section. The output of the PA section passes through the antenna switch and is radiated by the vehicle antenna or fixed-station antenna.

The controller section of the radio contains a microprocessor that controls the radio in accordance with its built in programming as well as commands input manually by the radio operator. The radio operator inputs manual commands to the controller section using the pushbuttons and other controls located on the control head. In addition to its controlling functions, the controller section provides audio amplification of the audio output signal in the receiver function. It also contains squelch detect circuitry based on a buffered discriminator signal from the Zero Intermediate Frequency Integrated Circuit (ZIF IC).

The operator interface function of the radio consists of: a microphone or the microphone portion of a telephone handset; a telephone keypad if used; the pushbuttons and other controls on the control head; and the digital and graphics displays on the control head. The pushbuttons and other controls on the control head provide digital commands to the controller section, and in some instances, hardwired commands to controlled circuits. The digital and graphics displays receive display data from the controller section. The control head contains its own microprocessor, which communicates with the controller section of the radio via an SB9600 serial digital data bus.

The DC power control and regulation function regulates and distributes to the various sections of the radio, DC power from the vehicle battery or fixed station power supply.

Receiver
 Detailed Functional Description

Receiver Front End (All Kits)

Receiver Intermediate Frequency (IF)
(All Kits)

The portion of the receiver function that is not part of the controller section of the radio is composed of three sections: receiver front end; receiver If, and receiver back end.

The following discussion is based on the schematic diagram for the receiver front end section on page 35 . The received RF signal (RX_IN) from the antenna switch in the PA section of the radio enters the first bandpass filter FL6250. The first bandpass filter has three poles, a 938MHz center frequency, a $6-\mathrm{MHz}$ wide passband, and a $45-\mathrm{dB}$ ultimate rejection for frequencies outside the passband.

After the first bandpass filter, the received RF signal goes to a pair of hot carrier limiting diodes (CR6250). The hot carrier diodes limit strong signals to prevent them from over driving and damaging RF preamplifier Q6271.

The main purpose of RF preamplifier Q6271 is to set the noise figure of the receiver. Q6271 is actively biased through Q6272. During transmit, the RF preamplifier is shut off by the K9.1 line via switch Q6250 and bias transistor Q6272. After the signal leaves the RF preamplifier, it enters second bandpass filter FL6251, which is identical to FL6250.

When the RF signal leaves the second bandpass filter, it goes into mixer U6251. The mixer is the double balanced active Gallium Arsenide type. The RF signal is applied to the mixer through balun transformer T6251. The first injection local oscillator is applied to the mixer via balun transformer T6252 and is 73.35 MHz below the RF signal frequency. The bias for the mixer is set by resistors R6285, R6286, and R6287. The IF output signal from the mixer, which is at a frequency of 73.35 MHz , is fed to the receiver IF section as IF_OUT through transformer T6253.

The following discussion is based on the schematic diagram for the receiver IF section on page 37 for kits FLF5574D, E, F; FLF5579C, D, E; FLF5600A; HUF1188A and HUF189A and on page 39 for kits FLF5607A and FLF5950A.

The IF_OUT signal from the receiver front end section enters the receiver IF section as the IF_IN signal. The first circuit in the receiver IF section is a resistive pad (R6376, R6377, R6378, R6392), which stabilizes the impedance presented to the output of the mixer in the receiver front end section. It also stabilizes the impedance presented to the input of the first $73.35-\mathrm{MHz}$ crystal filter, Y6376.

From the resistive pad, the signal passes through to the first 73.35MHz crystal filter, Y6376 whose surrounding components match it to 50 -ohms and to the input of IF amplifier Q6388. A matching network, which follows Q6388, matches the IF amplifier output impedance to the input impedance of the second $73.35-\mathrm{M} \mathrm{Hz}$ crystal filter, Y6377. Both crystal filters have two-poles and have a bandwidth of 13 kHz to accommodate the bandwidth requirements for digital data. Matching elements, which follow the second crystal filter, match the output of the second crystal filter to the input of the receiver back end section.

The signal out of the receiver IF section (IF_V_OUT) passes through connector J6400 and jumper plug J6401 to the input of the receiver back end section.

Receiver Back End (All Kits)

The following discussion is based on the schematic diagram for the receiver back end section on page 41 for kits FLF5574D, E, F; FLF5579C, D, E; and HUF1189A; on page 43 for kits FLF5600A and HUF1188A; and on page 45 for kits FLF5607A. and FLF5950A.

From the output of the receiver IF section, the IF signal (IF_IN) enters IF amplifier Q6203. A pair of hot carrier limiter diodes (CR6̄202) at the base of IF amplifier Q6203 protect Zero Intermediate Frequency Integrated Circuit (ZIF IC) U6201 from strong-signal overloading.

With kits FLF5591A, B, C and FLF5592A, B, C, the output of IF amplifier Q6203 is fed to shunt pin diode attenuator CR6203. The attenuation provided by the pin diode attenuator is a function of the signal level detected by the internal automatic gain control (AGC) circuit in the ZIF IC. As the RF level increases, the attenuation increases. This ensures that the ZIF IC, whose dynamic range is much less than that of the radio, is not over driven by strong signals, causing distortion in the detected signal.

With kits FLF5607A and FLF5950A, this attenuation function is performed by attenuator stages in the receiver IF section and, therefore, this ACG mechanism in the receiver back end section is bypassed. To do this, shorting resistor R6224 is mounted bypassing CR6203, which is not mounted, an additional shorting resistor is placed on the pads of L6208 instead of the 1 microHenry inductor, and CR6204 is not placed.

At the output of Q6203, there is a notch filter, for the third harmonic of 73.35 MHz , made up of components C6249 and inductor L6207. Transistor Q6201 and varactor diode CR6201 form the second local oscillator (LO). The LO operates as a voltage controlled oscillator (VCO), which is controlled by the ZIF IC.

The ZIF IC is a down converter, a filter, a limiter, and an FM demodulator. The IF signal going into the ZIF IC at 73. 35M Hz is down converted, filtered, limited, and demodulated. Demodulated audio comes out of the ZIF IC from pin 28 and is fed to the ASFIC audio signal filtering IC, which is part of the controller section of the radio.

In addition to the audio output signal, the receiver section provides a squelch signal output, which also is processed and used by the controller section of the radio to mute the receiver output during periods of no signal reception.

Refer to the discussion under the title Receive Audio Circuits, which is located in the Controller Section Theory of Operation portion in Volume 1 of this service manual.

Transmitter Detailed Functional Description

The transmitter function of the radio is distributed between the controller, the synthesizer, and the power amplifier (PA) sections. This is shown on the functional block diagram for the radio, Figure 1. The portion of thetransmitter function physically located in the controller section is described in theController Section Theory of Operation Iocated in Volume 1 of this service manual. That portion includes the audio circuits that filter, amplify, and otherwise process the audio signal from the microphone and/or telephone handset. The portion of the transmitter function located in the synthesizer section of the radio is described in the Synthesizer Detailed Functional Description in this volume of the service manual. The synthesizer section of the transmitter receives the amplified and processed audio signal from the controller section and produces a frequency-modulated radio frequency carrier (injection) signal, which is input to the transmitter power amplifier (PA) section.

The remaining part of the transmitter function of the radio is located in the PA section. The following discussion covers the part of the transmitter function that is physically located in the PA section.

There are two different configurations of the PA section; one for the $12-\mathrm{W}$ att radio, and the other for the $30-\mathrm{W}$ att radio.

Thefollowing discussion is based on the schematic diagram for the 15Watt power amplifier (PA), on page 47 for kits FLF5579C, D, E, FLF5600A, and HUF1188A and on page 49 for kit FLF5950A.

The power amplifier (PA) is a radio frequency (rf) power amplifier, which amplifies the output from the injection string (TX_INJ) to an RF output power level of 12 W atts. It consists of a driver stage Q6501, followed by a power amplifier module U6501.

In kits FLF5579C, D, E and FLF5600A, the second and third stages of U6501 operate directly from the A+supply voltage received from connector J6502 via current sense resistor R6520. To protect the input stage from voltage transients on the A+line, the first stage of U6501 is operated from the keyed K9.1 voltage, which is provided by the controller section of the radio.

In kit FLF5950A, two DC supply inputs for U6501 (+DCISUP and +DCISUPP) are obtained directly from the A+line via R6520. The transmit enable input (+DCBIAS) is obtained from the A+line via R6520 and switch U6502, which is controlled by the keyed K9.1 voltage.

The rf drive, which is routed into transistor Q6501, is controlled from Q6506 via the PA control line. A rising control voltage on the PA control line causes a rising collector voltage on Q6501. This causes more power to be delivered into the next stage. Conversely, a decreasing control line voltage decreases the power delivered into the next stage. By controlling the drive power to U6501 and the following stages in the power amplifier lineup, automatic level control (ALC) is accomplished, which regulates the output power of the transmitter.

The output of U6501 goes to the antenna switch. The antenna switch is switched by the keyed 9.1 voltage. In the transmit mode, the keyed K9.1 voltage is high. In kits FLF5579C, D, E and FLF5600A, the high K9.1 voltage turns on diodes CR6502, CR6503, and CR7504. When CR6502 is turned on, it forms a low impedance to the RF transmit path and allows the signal to pass through. Diode CR6503 forms a low impedance that is transformed to an open circuit through a quarter wavelength transmission line. This prevents transmitter power from being delivered into the receiver. Diode CR7504 is also turned on in the transmit mode, further isolating the receiver port from transmitter energy. In the receive mode, all these diodes are off. The off capacitance of CR6502 is tuned by L6508 to form a high impedance looking into the transmitter. Therefore, energy coming in the receive mode is channeled to the RX port.

In kit FLF5950A, the antenna switch has only two diodes (CR6502 and CR6504). The two diodes are forward biased by the K9.1 voltage in transmit mode and zero biased in receive mode.

Harmonics of the transmitter are attenuated by the harmonic filter. In kits FLF5591A, B, C and FLF5604A, the harmonic filter is formed by two inductors (L6512 and L6513) and six capacitors (C6539, C6540, C6542, C6543, C6544, C6546). This network forms a low-pass filter to attenuate harmonic energy of the transmitter to an acceptablelevel. In kit FLF5952A, there are only three capacitors (C6543, C6544, and C6546).

A forward power detector follows the harmonic filter. This forward power detector is a microstrip printed circuit, which couples a small amount of the forward power going out of the radio to diode CR6506 where it is rectified. This rectified signal forms a voltage that is proportional to forward power out of the radio. A power control circuit in the controller section of the radio holds this voltage constant, which ensures the forward power out of the radio is held constant.

In the PA compartment, 50k thermistor R6519 senses the temperature in the area of the power module. The resultant signal isfed back to the power control circuit to protect the power amplifier against overtemperature conditions. Resistor R6520, in series with the A+line supply, feeds voltage to the power module. The voltage across R6520 is sensed and the resultant two inputs are channeled to the power control circuit. The power control circuit senses the voltage drop across this resistor, which is determined by the magnitude of the drain current in U6501. It uses this as a limit mechanism whereby the power control circuit limits the magnitude of current that can be drawn by U6501. This protects the device from excessive power dissipation.

Reverse polarity protection for the transmitter is provided by diode CR6508. The cathode is soldered to the A+line while the anode is shorted to the chassis via a spring. In kit FLF5950A, the diode is a surface mount device and the anode is soldered to the printed circuit board ground plane. Under reverse polarity conditions to the radio, this diode conducts and protects the radio from damage. This diode also provides transient over-voltage protection by breaking down when the supply voltage to the radio exceeds 24 volts.

> 35-Watt Power Amplifier (Kits FLF5574D, E, F; HUF1189A; FLF5607A)

The following discussion is based on the schematic diagram for the 35W att power amplifier (PA) on page 51 for kits FLF5574D, E, F and HUF1189A, and on page 53 for kit FLF5607A.

The power amplifier (PA) is a radio frequency (rf) power amplifier, which amplifies the output from the injection string (TX_INJ) to an RF output power level of 12 W atts. It consists of a driver stage Q6501, followed by a power amplifier module U6501.

In kits FLF5574D, E, F and HUF1189A, the second and third stages of U6501 operate directly from the A+supply voltage received from connector J6502 via current sense resistor R6520. To protect the input stage from voltage transients on the A+line, the first stage of U6501 is operated from the keyed K9.1 voltage, which is provided by the controller section of the radio.

In kit FLF5607A, two DC supply inputs for U6501 (+DCISUP and +DCISUPP) are obtained directly from the A+line via R6520. The transmit enable input (+DCBIAS) is obtained from the A+line via R6520 and switch U6502, which is controlled by the keyed K9.1 voltage.

The rf drive, which is routed into transistor Q6501, is controlled from Q6506 via the PA control line. A rising control voltage on the PA control line causes a rising collector voltage on Q6501. This causes more power to be delivered into the next stage. Conversely, a decreasing control line voltage decreases the power delivered into the next stage. By controlling the drive power to U6501 and the following stages in the power amplifier lineup, automatic level control (ALC) is accomplished, which regulates the output power of the transmitter.

The output of U6501 goes to an additional power amplifier stage (Q6505) whose output is coupled to the antenna switch via a matching hybrid (H6501). Transistor Q6505 raises the 12-W att RF power output level of U6501 to the required 30 W atts. M atching hybrid H6501 ensures the proper collector load for Q6505 and provides correct impedance matching between the output of Q6505 and the antenna switch.

The antenna switch is switched by the keyed 9.1 voltage. In the transmit mode, this 9.1 voltage is high turning on diodes CR6502, CR6503, and CR1. When CR6502 is turned on, it forms a low impedance to the RF transmit path and allow the signal to pass through. Diode CR1 forms a low impedance that is transformed up to an open circuit through a quarter wavelength transmission line. This prevents transmitter power from being delivered into the receiver. DiodeCR6503 is al so turned on in the transmit mode further isolating the receiver port from transmitter energy.

In the receive mode all these diodes are off. The off capacitance of CR6502 is tuned by L6508 to form a high impedance looking into the transmitter. Therefore, energy coming in the receive mode is channeled to the RX port. Harmonics of the transmitter are attenuated by the harmonic filter. The harmonic filter is formed by components L2, L3, and L4, and capacitors C3, C5, C7, and C9. This network forms a low-pass filter to attenuate harmonic energy of the transmitter to an acceptable level.

A forward power detector follows the harmonic filter. This forward power detector is a microstrip printed circuit, which couples a small amount of the forward power going out of the radio to diode CR2 where it is rectified. This rectified signal forms a voltage that is proportional to forward power out of theradio. A power control circuit in the controller section of the radio holds this voltage constant, which ensures the forward power out of the radio is held constant.

In the PA compartment, 50k thermistor R6519 senses the temperature in the area of the power module. The resultant signal isfed back to the power control circuit, in the controller section of the radio, which protects U6501 by reducing the power output in the event of an overtemperature condition. Resistor R6520, in series with the A+line supply, feeds voltage to the power transistor. The voltage across R6520 is sensed and the resultant two inputs are channeled to the power control circuit. The power control circuit senses the voltage drop across this resistor, which is determined by the magnitude of the drain current in Q6505. It uses this as a limit mechanism whereby the power control circuit limits the magnitude of current that can be drawn by Q6505. This protects the device from excessive power dissipation.

Reverse polarity protection for the transmitter is provided by diode CR6508. The cathode is soldered to the A+line while the anode is shorted to the chassis via a spring. In kit FLF5607A, the diode is a surface mount device and the anode is soldered to the printed circuit board ground plane. Under reverse polarity conditions to the radio, this diode conducts and protects the radio from damage. This diode also provides transient over-voltage protection by breaking down when the supply voltage to the radio exceeds 24 volts.

Synthesizer Detailed Functional Description (All Kits)

Thesynthesizer section of the radio generates the first conversion local oscillator signal and the second conversion reference oscillator for the receiver portion of the radio. It also generates the transmitter rf carrier signal, which is frequency modulated by the amplified and processed audio signal from the output of the audio signal filter IC (ASFIC) in the controller section of the radio. The frequency modulated transmitter rf carrier signal is amplified by the transmitter PA section of the radio.

The following discussion is based on the schematic diagram for the synthesizer section on page 55 . The synthesizer section consists of a pendulum reference oscillator (U6704) and a phase locked loop (PLL), which is made up of a fractional-N synthesizer integrated circuit (IC), (U6702), a loop filter, two voltage controlled oscillators (VCO) (U6711 and U6712), a buffer amplifier (U6703), and a feedback amplifier (Q6710).

The pendulum reference oscillator (U6704) contains a temperature compensated crystal, which has an oscillation frequency of 16.8 MHz . The output of the oscillator (pin 10 of U6704) is applied to pin 14 (XTAL1) of U6702 via C6717 and R6701. VCOs U6711 and U6712 are varactor tuned. The VCO frequencies are controlled by the voltage applied to pin 10 of U6711 and U6712. This control voltage ranges from about 2.5 to 10.5 Vdc . A small control voltage produces a lower frequency and a large control voltage produces a high frequency, respectively.

TheRX VCO U6712 (861-867 M Hz frequency range) provides the first LO injection frequency for the receiver, which is 73.35 MHz below the carrier frequency. The RX VCO is selected by setting pin 7 high on U6712.

The TX VCO U6711 (896-941 MHz frequency range) provides the transmit frequency in conventional mode and the transmit frequencies in talk around mode. TheTx VCO is selected by setting pin 8 high on U6711.

The buffer stage (U6703) and the feedback amplifier (Q6710) provide the necessary gain and isolation for the phase locked loop.

The fractional-N synthesizer IC, U6702, consists of a prescaler, a programmable loop divider, control divider logic, a phase detector, a charge pump, an A/D converter for low frequency digital modulation, a balance attenuator to balance the high and low frequency analog modulation, a 13 V positive voltage multiplier, a serial interface for control, and a super filter for the regulated 9.3 volts. Q6709 is used as a current amplifier for the super filter. The output voltage of the super filter (collector of Q6709) drops from 9.3 V to about 8.5 V . This filtered 8.5 Vdc supplies the voltage for the VCOs (U6711 and U6712), theTX/ RX VCO switches (U6708 and U6710), thefeedback amplifier (Q6710), and the synthesizer charge pump resistor network (R6705, R6706 and R6755).

The synthesizer supply voltage is provided by the 5 V regulator (U6705). The 2.1 MHz reference signal (pin 10 of U6702) is generated by dividing down the signal of the reference oscillator U6704 after it is applied to pin 14 of U6702.

In order to generate a high voltage that supplies the charge pump output stage at pin VCP (pin 36 of U6702), 13 V is generated at pin 1 of CR6701 by the positive voltage multiplier circuitry (CR6701). This voltage multiplier is basically a diode capacitor network driven by two 1.05 Mhz, 180 degrees out of phase signals (pins 8 and 9 of U6702).

The serial interface (SRL) is connected to the controller section of the radio via the data line (pin 2 of U6702), clock line (pin 3 of U6702), and chip enable line (pin 4 of U6702). Proper enabling of these lines allows the controller section to load the fractional-N synthesizer IC.

The output of the VCO (pin 4 of U6712 or pin 6 of U6711) is fed into the buffer input port (pin 1) of U6703 through an attenuator network (R6707, R6708, R6709). The output of the buffer, pin 5 of U6703, is applied to the input of the feedback amplifier (Q6710) through an attenuator network (R6749, R6750, R6751). To close the synthesizer loop, the output of Q6710 is connected to the PREIN port (pin 21) of synthesizer U6702. The buffer output (pin 5 of U6703) also provides signal for the receiver LO injection and the transmit injection string circuit. The charge pump current is present at pin 31 of U6702.

Theloop filter (which consists of R6702, R6703, R6704, C6732, C6734, C6735, C6736, C6737, C6785, C6786, C6817, C6818) transforms this current into a voltage. That voltage is applied to pin 8 of the TX VCO (U6711) or pins 7 of RX VCO (U6712), which alters the output frequency.

The phase locked loop is frequency modulated by the transmit audio signal from the controller section. To accomplish this, theaudio signal from the controller section is applied to pin 5 of fractional-N synthesizer IC U6702.

An A/D converter in the fractional-N synthesizer IC converts the analog modulating signal into a digital code, which is applied to a loop divider. This causes the carrier frequency to deviate. A balanced attenuator is used to adjust the VCO's deviation sensitivity to high frequency modulating signals. The output of the balanced attenuator is present at the MOD OUT port (pin 30 of U6702).

The transmit injection string in the synthesizer consists of two amplifier stages (Q6702 and Q6704) whose main purpose is to maintain a constant output to drive the RF power amplifier and to provide isolation. The two stages (Q6704 and Q6702) are actively biased through Q6701 and Q6703. The TX injection string is on only during the transmit mode with K 9.1V.

Controller Detailed Functional Description

The theory of operation for the controller section of the radio is located in Volume 1 of this service manual.

Dc Power Control and Regulation Detailed Functional Description

The theory of operation for the dc power control and regulation section of the radio is located in Volume 1 of this service manual.

Troubleshooting and Repair

This chapter is divided into two sections: 3-1, Troubleshooting; and 3-2 Repair.

Section 3-1 provides troubleshooting charts for the receiver, synthesizer, and power amplifier sections of the radio. The receiver, synthesizer, and power amplifier sections of the radio are unique for each frequency range. (Troubleshooting Charts for the overall radio and for the sections of the radio that are common in design for all frequency ranges (i.e., controller, power control, and control heads) are provided in Volume 1 of this Service Manual, M otorolaPublication Number 68P81083C20.)

Section 3-2 provides a replacement procedurefor the RF power Output transistor (Q6505) used only in the 35-Watt version of the radio.

Troubleshooting information and troubleshooting Charts related to the SECURENET Option for the radio are located in the SECURENET Option Service Manual, Motorola Publication 68P81083C25.

Option Service Manual, Motorola Publication 68P81083C25.

Section 3-1 Troubleshooting

This section contains the following troubleshooting charts for the receiver, synthesizer, and transmitter sections of the radio.

> NOTE: Troubleshooting charts 1-1 through 1-13 are located in Volume 1 of this Service Manual, Motorola Publication 68P81083C20, because these troubleshooting charts arecommon to all models of the radio.

- Receiver:

- Troubleshooting Chart 2a-1, Receiver Front End - Page 23
- Troubleshooting Chart 2a-2, Receiver IF and Receiver Back End - Page 24

- Synthesizer:

- Troubleshooting Chart 2a-3, Synthesizer Deviation - Page 25
- Troubleshooting Chart 2a-4, Synthesizer Pendulum Oscillator - Page 26
- Troubleshooting Chart 2a-5, Synthesizer Main - Page 27
- Troubleshooting Chart 2a-6, Synthesizer No Transmitter Injection Signal - Page 28

- Power Amplifiers:

- Troubleshooting Chart 2a-7, 15-W att Power Amplifier - Page 29
- Troubleshooting Chart 2a-8, 35-W att Power Amplifier - Page 30

Section 3-2 - Repair

Replacement of Transistor Q6505

Tools and Materials Required

Disassembly of Radio

This section provides a replacement procedure for Q6505, therf power output transistor in the 30-W att power amplifier.

To replace Q6505, proceed as follows:

Before proceeding, ensurethat the following tools and material sare on hand:

- Alcohol (isopropyl)
- High temperature solder, SN96AG04 composition, Motorola Part No 1180433L04
- Hot air gun (600 degrees maximum temperature)
- Low lint wipers or rag
- Soldering station including a soldering iron with chisel-style tip which is approximately $1 / 8$-inch in size.
- Solder flux.
- Solder wick
- Stiff brush, natural bristles approximately 1-cm high and 1-cm wide.
- Thermal compound, Motorola Part No. 111022D23.
- Transistor assembly tool, M otorola Part No. 0186126F01, M otorola kit No. FLN 9037A
- Thermal pad for heatsink block B6501, M otorola part number 7508184K01.

1. Remove transceiver board from radio chassis following procedure provided in Volume 1 of this service manual, Motorola Publication 68P81083C20.
2. After transceiver board is removed from radio chassis, clean off thermal paste from all surfaces that have thermal paste on them using low lint wipers or rag.

Removing Faulty Transistor

Preparing Transceiver Board for New Transistor

1. Before removing faulty transistor, observe carefully how flange capacitors C6567 and C6568 are mounted. This will help you later in mounting new capacitors.
2. Set hot air gun for medium temperature and low air speed. This will ensure that other components in vicinity of Q6505 will not get dislodged and moved accidently.
3. Train hot air gun on flanges of transistor. After a few moments, the solder holding flanges will reflow enabling transistor and flange capacitors C6567 and C6568 to be lifted off transceiver board together.
4. Using solder wick, isopropyl alcohol, and stiff bristle brush, remove excess solder and clean pads on transceiver board where transistor was soldered.
5. Place transceiver board, with its heavy side up, on transistor assembly tool. Heavy side is side with DC-power and antenna connectors. Make certain that all four guide pins on transistor assembly tool are engaged into their corresponding holes in transceiver board.
6. Identify the six pads on transceiver board corresponding to the six flanges on transistor. The four corner pads are ground; the middle pad towards antenna connector is the transistor collector; and the opposite middle pad is the transistor emitter.

NOTE: In next step, be certain to tin transistor pads and fill via holes with high temperature solder, composition SN96PB04.
4. Using solder iron, carefully tin each of the six pads so that they are covered with a thin coat of solder and all via holes are filled.

1. Place a small spot of flux on each of the six transceiver-board pads to which the flanges of transistor are to be soldered.
2. Insert the narrow-diameter side of a spacer, M otorola Part Number 4380545 K 01 , into each of the two transistor mounting holes in transceiver board.
3. Ensure that new transistor is correct replacement type by verifying that M25C17 is printed on transistor face.

NOTE: Collector flange of transistor is the one with its corner cut off.
4. Position new transistor onto transceiver board with collector flange oriented towards antenna connector. Ensure that transistor is sitting snug on transceiver board with all six flanges flat on their corresponding transceiver-board pads.
5. Lower arm of Distaco clamp on transistor assembly tool. Then lock clamp with its lever to clamp transistor in place on transceiver board.

Soldering Transistor

Installing Flange

 Capacitors C6567 and C6568.1. Place a small spot of flux on each of the six transistor flanges.
2. Solder each transistor flange to transceiver board as follows:
3. - Set soldering iron temperature to approximately 400 degrees Centigrade.
4. - Melt a small mound of solder onto flat face of soldering iron.

Caution

3. Press face of soldering iron firmly to flange for no more than three to four seconds.
4. Inspect transistor flange carefully to ensure it is soldered securely, and that it is not shorted to any of the other flanges or to the transistor heat sink.

NOTE: Capacitors C6567 and C6568 get mounted flat on transistor collector and ground flanges with non-solderable edge flush against transistor body. Each capacitor is attached by soldering its outside solderable edge to one of the transistor ground flanges and its inside solderable edge to transistor collector flange. There must be a gap of approximately 2 millimeters between the two capacitors (i.e., room to insert a chisel style solder iron tip) to ensure that good solder joints can be made between capacitor leads and collector flange of transistor.

1. Ensure that both capacitors C6567 and C6568 are correct replacement type by verifying that M otorola Part Number is 2113742B25, value is 18pF, and marking is G1.

In next two steps, to avoid damage to transistor and capacitors, ensure that soldering operations take no more than three to four seconds to accomplish. Caution
2. Solder outside solderable edge of each capacitor to one transistor ground flange, being certain that each capacitor is flat on transistor flange with non-solderable edge flush against transistor body.

Reassembly of Radio

3. Place a small drop of flux on transistor collector flange between capacitors. Place chisel style solder iron tip between capacitors and onto collector flange of transistor. Feed in some high temperature solder (SN96PB04) so that inside solderable edges of both capacitors are soldered securely to collector flange of transistor.
4. Examine soldered capacitors. Ensure that they are reasonably flush against transistor body and are not shorting transistor collector flange to transistor heat sink.
5. Examine surrounding components to ensure that none of them have been damaged or displaced.
6. Examine face of transistor heat sink. Ensure that it is free from burrs and flux, which could prevent a good thermal contact to radio chassis.
7. Spread thermal compound on heat sink of the following components:

- Transistor Q6505
- PA module U6501
- Audio PA module U0203
- +5 V regulator U0500
- +9.3V voltage regulator U0501

3. Place a new thermal pad, M otorola Part No. 7508184K01, on heat sink block B6501.
4. Install transceiver board into radio chassis following procedure provided in Volume 1 of this service manual, M otorola Publication 68P81083C20.

NOTES

NOTES: 1. Check distortion with HP8903B using either CCITT, C-MESSAGE, or PSHOMETRIC audio filter. 2. At $\mathrm{F}_{0} \pm 3,6,9 \mathrm{KHz}$ (No Modulation) RF Symnetry should be $\pm 1 \mathrm{~dB}$.
3. DC Voltages for Q6382, Q6388, and U6201 are:

Device		Emitter		
Qase				Collector
Q6382		6.25		5.7
Q6388	0.1		0.85	6.0
U6201	1.7		2.3	3.3

4. Chart $1-5$ is located in Volume 1 of
this service manual.

MAEPF-25114-A

MAEPF-25117-O

Troubleshooting Chart 2a-6 Synthesizer No Transmitter Injection Signal

Reference Drawings

This section contains the reference drawings listed below for the receiver (front end, IF, and back end), transmitter, and synthesizer portions of the radio.

- Overall Radio:
- Transceiver Board Section Locations - Page 32
- Schematic Diagram Interconnection List, Table 2 - Page 57
- Receiver:
- Receiver Front End Component Locations and Parts List Page 34
- Receiver Front End Schematic Diagram - Page 35
- Receiver IF Component Locations and Parts List - Pages 36 and 38
- Receiver IF Schematic Diagram - Pages 37 and 39
- Receiver Back End Component Locations and Parts List Pages 40, 42, and 44
- Receiver Back End Schematic Diagram - Pages 41, 43, and 45

- Power Amplifiers:

- 15-W att Power Amplifier Component Locations and Parts List - Pages 46 and 48
- 15-Watt Power Amplifier Schematic Diagram - Pages 47 and 49
- 35-W att Power Amplifier Component Locations and Parts List - Pages 50 and 52
- 35-Watt Power Amplifier Schematic Diagram - Pages 51 and 53

- Synthesizer:

- Synthesizer Component Locations and Parts List - Page 54
- Synthesizer Schematic Diagram - Page 55

Refer to Volume 1 of this service manual (Motorola Publication 68P81083C20) for reference drawings for the controller and control head portions of the radio.

Refer to the Secure Option service manual (Motorola Publication 68P81083C25) for reference drawings for the secure option for the radio.

VIEWED FROM SIDE 1

Figure 2 Transceiver Board Section Locations

NOTES

RECEIVER FRONT END COMPONENT LOCATIONS

REFERENCE symbol	MOTOROLA PART NUMBER	description
C6251	2113740 F41	${ }_{\text {capac }}$
${ }_{\text {C6252 }}$	${ }_{2113740541}^{21374054}$	${ }_{\text {390pF }}$
${ }^{6} 6271$	${ }^{21137743 \mathrm{~K} 15}$	0.1 uF
${ }^{\text {C6272 }}$	2113740541	${ }^{39 p F}$
${ }^{\text {C6273 }}$	${ }^{2113743515}$	0.14 F
${ }^{\text {C6274 }}$	2113741F99	${ }^{10 \mathrm{n} F}$
${ }^{\text {C6275 }}$	${ }^{2113740 F 51}$	${ }^{\text {39pF }}$
${ }_{6} 62277$	2113741 F25	
${ }^{\text {C6278 }}$	2113740 F35	22pF
C6279	${ }_{\substack{2113743 K \\ \\ 2117740513}}$	0.14F
C6280 C6281		${ }_{\substack{\text { 2, } \\ \text { 2.7pF } \\ 100 \mathrm{~F}}}$
C6282	06620577001	$10 . \mathrm{Ohm}$ Resistor
${ }^{\text {C6285 }}$	${ }^{21137405 F 41}$	${ }^{399 F}{ }_{\text {F }}$
C6286		(ius
C6288	21137411549	10 F
C6289	2113740541	399F
C6629		${ }^{390 \mathrm{~F}}$ 330
Coren		3300F
C6293	2113741159	10 F
${ }^{\text {C6294 }}$	${ }^{2311049 A 07}$	${ }^{14 F}$
C6295	2113741 F99	10 F
(${ }_{\text {C66296 }}^{\text {C6297 }}$	${ }_{\substack{2113743507 \\ 211740541}}$	${ }_{\substack{\text { 22nF } \\ \text { 39p }}}$
CR6250	4880154K03	DIodes: Dual Schothy Mixer
		fluters:
FL6250	${ }_{9}^{91026033510}$	860-MHz Filter $860-\mathrm{MHz}$ Filter
		Inductors:
${ }^{16271}$	${ }_{\text {2406287T17 }}^{24659}$	
${ }_{\substack{\text { L6272 } \\ \text { L6273 }}}$	2460591 A11 2465991804	
${ }_{\text {L }}{ }_{\text {L6274 }}$	${ }_{\text {24605911 } 23}^{24659}$	13.8nH
		transistors:
Q6250	4805921 T02	Special Rf Power Ampli-
${ }^{\text {Q6271 }}$	4882022N704813824A17	NPN
		PNP
		Resistors:
R6250	0662057773	
${ }_{\text {R }}^{\text {R6271 }}$	06620577884	${ }^{30 \mathrm{~K}}$
(R672	$0662057{ }^{\text {O69 }}$ $0662057 A 13$	${ }_{33}^{6.8 \mathrm{~K}}$
R6274	0662057759	${ }^{2.7 \mathrm{~K}}$
${ }_{\text {R }}^{\text {R6275 }}$	O662057A599 O662057A18	${ }_{51}^{2.7 \%}$
${ }_{\text {R6285 }}$	${ }_{0}^{066205772929}$	${ }_{150}$

REFERENCE SYMBO	MOTOROLA PART NUMBER	DESCRIIPTION
R6286	0662057 65	4.7K
R6287	${ }^{0662057 A 57}$	2.2 K
R6291	${ }^{06662057 A 13}$	${ }^{33}$
Reren	${ }_{0}^{0666205747001}$	10
(er	0662057 A1	470
		transformer
	2505515 V 03	4:1 Balun
	2505515 V 03	$\left\lvert\, \begin{aligned} & \text { 4:1. BALUN } \\ & \text { Transtormer, 25:1 } \end{aligned}\right.$
U6251	5105625 V 2	INTEGRATED CIRCUITS Balanced GaAs Mixer
		SHELLDS:
SH6201 SH6202 SH6250	2602660001	TX Inj Shield
	2605261 V 01 2605915V0	2nd L.O. Shield TX Pwr Ampl Shield
		Printed Circuit Boards
	8404994E05	For Kits FLF5574,
	${ }_{\text {Issue P5 }}^{\text {84044 }}$	For kits $\mathrm{FLF5579}$ C
	${ }_{\substack{\text { Issue P4 } \\ \text { 8404416P05 }}}$	For Kit FLF5600A
	${ }_{\text {lissue P5 }}$	For Kit LLF5607A
	${ }_{\text {Issue P1 }}$	Forkit L-5607A
	(1s408497Y01	For Kit FL-599
		For Kit HUF1188A
	Issue P95	
	8404994E0 ssue P5	For Kit HUF 1189 A

RECEIVER IF COMPONENT LOCATIONS

HEAVY COMPONENTS SIDE
MAEPF-25083-O

LIGHT COMPONENTS SIDE

REFERENCE SYMBOL	MOTOROLA PART NUMBER	description
		CAPACITORS:
${ }^{\text {C6376 }}$	2113741749	0.014 F
${ }_{\text {C66377 }}$	2113740 F37	
${ }_{\text {C66378 }}$	2113740 F20	5.1pF
C6379	2113740 23	6.8pF
${ }^{\text {C6380 }}$	2113740 F23	6.88 F
C6381	2113740 F20	5.1pF
${ }^{\text {C6382 }}$	${ }^{21113740 F 366}$	24pF
С6383	2113741749	0.01uF
C6384 C6385	2113741F49	0.01uF
C6385 C6386	2113741549 211374F49	$0.014 F$
C6336	2113741 F49 2113740 36	${ }^{0.014 u^{\text {a }}}$
${ }_{\text {C6388 }}$	2113740 F20	${ }_{5}^{24.10 \mathrm{FF}}$
С6389	2113740 F 23	6.8 pF
${ }^{\text {C6390 }}$	2113740 F23	6.8 pF
${ }^{\text {C6391 }}$	${ }^{21113740 F 31}$	15pF
C6392	2113740F41	390F
С6394	$2113740 F 41$	${ }_{\text {39pF }}$
С6395	2113740 F41	39pF
C6396	2113740541	39p F
C6397	2113740F41	39pF
C6398 C6399	2113740F4 2113740 4	39pF
${ }_{\text {C } 6400}$	2113740541	39pF
C6401	2113740541	39pF
${ }^{\text {C6402 }}$	2113740541	39p F
C6403	${ }^{2113740541}$	39pF
C6404	0662057C01	0-ohm Resist
J6400	$0913915 A 18$	ConNEctors: Receptacle
		inductors:
L6376	2462587 T22	390nH
L6377	2462587722	390 nH
L6378	${ }^{2462587722}$	390 HH
${ }_{\text {L L6379 }} \mathrm{L638}$	2462587722 246257730	
L6381	2462587722	390nH
L6382	${ }_{24652887722}$	390nH
L6383	2462587 T22	390nH
		transistors:
- ${ }_{\text {Q6332 }} \mathbf{0} 888$	4813824A17 $4882971 \mathrm{R01}$	PNP NPN
		RESIITORS:
R6376	0662057A49	
R6377	0662057701	10
R6378 R6380	0662057A49	1 K
R6381	0662057a35	270
R6382	0662057737	330
R6383 R6384	0662057A25 $0662057 A 56$	100 2 K
${ }_{\text {R6385 }}$	0662057 A61	${ }_{3.3 \mathrm{~K}}$
R6386	0662057A56	2K

REFERENCE	MOTOROLA PART NUMBER	DESCRIIPTION
R6387	0662057A41	470
R6388	0662057 A18	51
R6389	0662057 A29	150
R6391	0662057847	0
R6392	${ }_{0}^{06662057 A 011}$	10
R6400 R6401	0662057847 0662057001	
R6402	0662057701	
R6403	0662057847	
R6404	0662057847	${ }^{0}$ (On jumper plug J6601)
SH6310 SH6320	2605915V01 2605915V01	SHIELLS:
		Power Amplifier Power Amplifier
		Flters:
Y6376	$9102867 C 07$	Crystal BP 73.35/25;
Y6377	$9102867 \mathrm{C08}$	
		600B printed circuit Boaros (For Reterence only
	8404994E05	For Kits FLF5574D, E, F
	${ }_{8404416 \mathrm{P}}$	For Ktis fl-f579c, D, E
	${ }_{\text {l }}^{\text {Issue P4 }}$ 8404416P05	For Kit FLF5600A
	Issue P5	
	8404416P05 Issue 505	For Kit HuF1188A
	${ }_{\text {Issue }}^{\text {840994E05 }}$	For Kit HuF1189A

nоте
. All resistance values are in ohms unless indicated othervise 2. Components shown on component location and schematic
diagrams but not included in parts list are not placed.

RECEIVER IF COMPONENT LOCATIONS

HEAVY COMPONENTS SIDE

LGHT COMPONENTS SIDE

REFERENCE SYMBOL	MOTOROLA PART NUMBER	description
		CAPACITORS:
${ }^{6} 6354$	2113743K16	0.22 F
C6355	2113741F17	470pF
C6356	2113743K16	0.22uF
C6376	2113741749	0.01uF
${ }^{\text {c6377 }}$	2113740 F37	27pF
C6378 C6379	2113740F 18 2113740523	${ }^{4.3 \text { PF }}$
${ }_{\text {C }} \mathrm{C6388}$	21137440523 213	
C6381	2113740 F 18	4.30F
${ }^{\text {C6382 }}$	2113740 F37	27pF
C6383	2113741F49	0.01uF
${ }^{\text {C6384 }}$	$2113741 F 49$	0.01 uF
C6385	$2113741 F 49$	0.014 F
${ }^{\text {C6386 }}$	2113741F49	0.01uf
${ }^{\text {C6387 }}$	2113740537	27pF
${ }^{\text {C6388 }}$	2113740F 18 2113740 23	${ }^{4.3 \text { Pr }}$
C6389	2113740523 211370523	${ }^{6.88 \mathrm{~F}}$
C6390 C6391	$2113740 F 23$ 2111740527	6.8pF
C6392	2113740541	39pF
С6393	2113740F41	39pF
C6394	2113740F41	39pF
${ }^{\text {C6395 }}$	2113740 F41	39pF
${ }_{\text {C6336 }} \mathrm{C} 6397$	2113740F41	39pF
C6397	$2113740 F 41$ $2113740 F 41$	${ }^{39 p \mathrm{~F}}$ 39pF
С6399	2113740F41	39pF
C6400	2113740F41	39pF
C6401	2113740541	39pF
${ }_{\text {C6402 }}$	2113740541	39pF
C6403	2113740F41	39pF
		Inductors:
${ }^{16376}$	2462587 T22	390uH
L6377	2462587 T22 246587722	390 nH
${ }_{\text {L63778 }}^{\text {L6379 }}$	2462587T22 2462587 22	390 nH 390 HH
L6380	${ }^{2462587730}$	1000 nH
L6381	${ }^{2462587722}$	390 nH
L6383	2462587722 2462587722	390 nH 390 nH
	2462587 T22	
		TRANSISTORS:
${ }_{\text {Q6388 }}$	4813824A17	PNP
	4804188K01	NPN
		RESISTORS:
R6346	0662057A89	47K
R6348	0662057 FA 73	10K
R6339 R6374	0662057A73	${ }_{4}^{10 \mathrm{~K}}$
R6375	06662057847	-
R6376	0662057A49	1 k
R6377	0662057 A 01	10
R6378	0662057749	1 K
R6380	0662057719	4.7
${ }_{\text {R6381 }}^{\text {R6382 }}$	0662057A35	270
${ }_{\text {R63823 }}$	${ }^{06662057 A 37}$	330 100
R6333 R6384	${ }_{06662057 A 565}$	2 K
R6385	0662057 F 61	3.3 K
R6386	0662057 A56	2K

REFERENCE SYMBOL	MOTOROLA PART NUMBER	description
R6387	0662057A41	470
R6388	0662057A18	51
R6389	0662057847	0
R6391	0662057847	0
R6392	0662057A01	10
		SHIELDS:
SH6310 SH6320	2605915V01 2605915V01	Crystal Filter
		Crystal Filter
U6202	5113819A04	INTEGRATED CIRCUIT Quad Operational Amplifier MC3303
		Flters:
Y6376	9102867007	Crystal BP 73.35/25;
Y6377		
	9102867C08	Crystal BP 73.35/25; 60dB
		PRINTED CIRCUIT BOARDS (For Reference Only):
	8408537Y01 Issue P2	For Kit FLF5607A
	$8408537 \mathrm{Y0}$	For Kit FLF5950A

NOTES:

1. All resistance values are in ohms unless indicated otherwise,
2. Alr resistance values are in ohms unless indicated otherwise
3. $\begin{aligned} & \text { Components shown on component } \\ & \text { diagrams }\end{aligned}$ ocaion and schematic not included in parts
ist are not placed.

RECEIVER BACK END COMPONENT LOCATIONS

HEAVY
COMPONENTS
SIDE

RECEIVER BACK END PARTS LIST

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& \text { REFERENCE } \\
& \text { SYMBOL }
\end{aligned}
$$ \& MOTOROLA
PART NUMBER \& description

\hline \& \& CAPACITORS:

\hline ${ }^{6} 62201$ \& $2113743 K 15$
2113740551 \& 0.14 F
100 pF

\hline $\mathrm{C6203}$ \& 2113743 K 15 \& 0.14 F

\hline C6204 \& 2113743 A 23 \& 0.22 F

\hline C6205 \& 2113741525 \&

\hline C6206
C 6207 \& 2113743 K 15
211773423 \&

\hline C6208 \& 2113743k15 \& 0.14 F

\hline C6209 \& 2113743K15 \& 0.14 F

\hline C6210
C6211 \& 2113744 F25
211773819 \& 8.2pF
0.14 F

\hline C6212 \& $2113743 A 23$ \& 0.22 F

\hline ${ }^{66213}$ \& ${ }^{2113743 A 23}$ \& ${ }^{0.2224 F}$

\hline C6214 \& 2113741451
2311049002 \& ${ }_{\text {l }}^{\text {18pF }}$

\hline ${ }_{6} 6216$ \& 2113743 K 15 \& ${ }_{0} 0.14 \mathrm{~F}$

\hline C6217 \& 2113740 F 4 \& 39pF

\hline C6218 \& 2113740F42 \& 430F

\hline C6219
C6220 \& 2113740 F 22
2109720014 \& 43pF

\hline C6221 \& 2113741517 \& 470pF

\hline C6222 \& 2109720014 \& 0.14 F

\hline C6223
$\mathrm{C6224}$ \& $2113743 K 15$
2113734 K \& 0.14 F

\hline C6224 \& 2113743 K 15
2113743 K 15 \& 0.14F

\hline C6229 \& 2311049 J 23 \& 10uF

\hline C6230
C6231 \& ${ }_{\substack{2113743 K 15 \\ 2117740541}}$ \& ${ }_{\substack{0.14 F \\ 3905}}$

\hline ${ }_{6} 6232$ \& 2113743K15 \& 0.14 F

\hline C6234 \& 2113740 F 11 \& 2.2pF

\hline ${ }^{6} 6243$ \& 2113743×15
2117373×15 \& 0.14F

\hline C6245 \& 退 $\begin{aligned} & 2113743 \mathrm{~K} 15 \\ & 2113743 \mathrm{~K} 15\end{aligned}$ \& 0.14F

\hline C6247 \& 2113743K15 \&

\hline C6248 \& $2113740 \% 03$ \& Not placed

\hline C6250 \& 2113740-03 \& Not placed

\hline \& \& DIOEES:

\hline CR6201 \& 4862824001 \& Varactor
Not placed

\hline CR6203 \& 4805129M96 \& Dual

\hline CR6204 \& 4880154 K 03 \& Dual Schotky Mixer

\hline \& \& connectors:

\hline J 6400
J 6401 \& 0913915A18
2813916 B 13 \& Receptacle Jumper Plug

\hline \& \& InDUCTORS:

\hline L6204 \& ${ }^{2462587718}$ \& ${ }^{180} \mathrm{nH}$

\hline ${ }_{\text {L }}^{162025}$ \& 2462587044

2465878040 \& ${ }^{560} 20 \mathrm{nH}$

\hline L6208 \& 2462587730 \& 1000 nH

\hline
\end{tabular}

REFERENCE SYMBOL	MOTOROLA PART NUMBER	DESCRIPTION
$\begin{aligned} & \text { Q6201 } \\ & \text { Q6203 } \end{aligned}$	4882022N704882022N70	Transistor
		NPN
		NPN
8620	0662057 A89	RESISTOAS:
R6202		47K
	0662057 A89	47 K
R6204	0662057A80	20 K
	0662057A59	2.7 K
R6205	0662057A59	2.7 K
R6206	0662057 A59	2.7 K
	${ }^{06620574535}$	1.5 K
R6209 $\mathrm{R6210}$	${ }^{0662057847}$	0 Ohm
R6211	${ }^{06662057 A 84}$	${ }^{30 \mathrm{~K}}$
R6212R6215	${ }^{\text {0662057A77 }}$	${ }^{10 \mathrm{~K}}$
	0662057805	200 K
R6215 R 6216	${ }^{0662057 A 42}$	510
R6217	0662057 A49	
${ }_{\text {Re218 }}^{\text {R6219 }}$	0662057 A65	${ }_{\text {Not placed }}$
R6220	06662057 A81	22 K
R6221 $\mathrm{R6222}$	0662057A44	620
R6223	${ }^{06620574773}$	10K
	0662057 A77	15 K
U6201	5105457W11	INTEGRATED CIRCUITS: Zero IF I.C.
		PRINTED CIRCUIT BOARDS (FOR REFER ENCE ONLY)
	8404416P04	For Kits FLF5574D, E,
	8404994E05 Issue P5	For Klts FLF5579C, D, E, HUF1189A

NOTES:

1. All resistance values are in ohms unless indicated otherwise.
2. Components shown on component location and schematio

COMPONENTS
SIDE

LIGHT
COMPONENTS

REFERENCE SYMBOL	MOTOROLA PART NUMBER	DESCRIPTION
		CAPaCII
$\begin{aligned} & \text { C6201 } \\ & \text { C6202 } \end{aligned}$	2113743K15 2113740 F5	${ }_{\substack{0.14 \mathrm{~F} \\ 100 \mathrm{~F}}}$
C6203	2113743K15	0.14 F
C6204	$2113743 A 23$	0.22 F
C6205	2113741525	
${ }^{\text {C6620 }}$		${ }_{0}^{0.14 \mathrm{~F}} 0$
C6207 66208	${ }_{\substack{2}}^{21137434223}$	0.22uF
C6829	${ }_{2} 2113743 \mathrm{k} 15$	${ }_{\text {l }} 0.14 \mathrm{~F}$
C6210	$2113740 F 25$	8.2pF
C6211	2113741 A33	3.3nF
${ }^{6} 6212$	${ }^{21113743 A 23}$	0.22uF
${ }^{\text {C6213 }}$	${ }^{2113773423}$	0.22uF
C6214 $\mathrm{C6215}$		
${ }^{\text {C6216 }}$	${ }_{21137743 \mathrm{~K} 15}$	${ }_{0} 0.1$ luF
C 6217	2113740541	399F
C6218	${ }_{\substack{2 \\ 2113740 F 542 \\ 2113740542}}$	${ }_{4}^{43 p \mathrm{~F}}$
C6220	2109720014	0.14 F
	${ }_{\substack{2113741517 \\ 2109720014}}$	470pF
C6223	${ }_{2} 21137433125$	${ }^{\text {0.1.1uF }}$
${ }^{6} 6224$	2113743 K 15	0.14 F
${ }^{\text {C6225 }}$	${ }^{21113743 K 15}$	0.14 F
	${ }^{2113743 A 23}$	0.22uF 10uF
${ }^{\text {C6230 }}$	${ }_{21117743 \mathrm{~K} 15}$	0.14 F
${ }_{6} 6231$	$2113740 F 41$	39pF
C6232	2113743 K 15 2113740 F 11	- 0.14 F
${ }_{\text {Cober }}^{\text {C6243 }}$	${ }_{\substack{2}}^{21137474 \mathrm{~F}_{1}}$	2.2pF
C6245	2113743 K 15	0.14 F
${ }^{\text {C6246 }}$	2113743 K 15	0.14 F
${ }_{\text {C }}^{\text {C6247 }}$	2113743 K 15	0.14F
${ }_{\text {Cober }}^{\substack{\text { C6248 } \\ \text { C6249 }}}$	$2113740 F 03$	Not $\begin{gathered}\text { Not placed } \\ \text { 1p }\end{gathered}$
C6250		Not placed
C6404	0662057c0	0 Ohm Resistor (On, jumper plug J6401)
		diodes:
${ }^{\text {CR6201 }}$	486882401	
CRR6202 CR6203		Not placed
${ }_{\text {cher }}$ CR6204	${ }^{4880154 K 03}$	Dual Schotky Mix
		connectors:
J6400 J6401	0913915A18 281396813	Receptacle Jumper Plug
		wnouctors:
L6204	2462587718	180 nH
L6205 L620	2462587044 246587040	560 nH 270 nH
${ }_{\text {L }}^{\text {Le207 }}$	${ }_{246587730}^{2462887040}$	${ }^{2} \mathbf{2 7 0 0 0 \mathrm { nH }}$

RECEIVER BACK END COMPONENT LOCATIONS

MAEPF-26323-O

| REFERERENCE |
| :--- | :--- | :--- |
| SYMBOL | MOTOROLA

NOTES:

1. All resistance values are in ohms unless indicated otherwise,
2. Components shown on component location and schem

RECEIVER BACK END PARTS LIST

REFERENCE SYMBOL	MOTOROLA PART NUMBER	description
	2113743615	CAPACI
$\mathrm{C}_{6} 6201$	${ }^{21} 2113743 \mathrm{~K} 15$	
C6203	${ }_{2}^{21117733 \mathrm{~K} 15}$	-
C6204	2113743 A23	${ }_{0} 0.22 \mathrm{uF}$
C6205	$2113741 F 25$	
C6206	2113743K15	0.14 F
C6207	$2113743 A 23$	0.22uF
C6208	2113743 K 15	0.14 F
C6209	2113743K15	0.14 F
C6210	$2113740 F 25$	8.2pF
${ }^{\text {C6211 }}$	2113741433 2113743323	3.3nF
${ }_{6} 6213$	$2113743 A 23$ 211374323	${ }_{0}^{0.22 u F}$
C6214	2113741451	18 pF
C6215	2311049 AO 2	0.15uF
${ }^{\text {C6216 }}$	2113743K ${ }^{2}$	${ }^{0.14 \mathrm{~F}}$
C6217	2113740F41	39pF
C6219	2113740542	43pF
C6220	2109720014	0.14 F
${ }^{6} 6221$	2113741517	4700F
${ }^{\mathrm{C} 6222}$	${ }^{2109720014}$	0.14F
${ }_{\text {Cl623 }}$	2113743 K 15 2113743 K 15	0.14F
C6225	2113743k15	0.14 F
C6229	${ }^{2311049223}$	10uF
C6230	2113743 K 15	0.14 F
${ }_{\text {C }} \mathrm{C6231}$	${ }_{2}^{2113740 F 41}$	${ }_{\text {cher }}^{\text {39pF }}$
C6234	2113740 F 11	2.2pF
C^{6243}	2113743 K 15	0.14 F
${ }^{\text {C6245 }}$	$2113743 K 15$	0.14 F
C6247	2113743 K 15 2113740F03	$\begin{aligned} & \begin{array}{l} 0.1 \mathrm{uF} \\ \text { 1pF } \end{array} \end{aligned}$
CR6201CR6202	486882401	diodes:
		Varactor Not placed
		Inductors:
L6204	2462587718	180 nH
L6205	2462587044 246587040	560 nH 270 nH
L6208	0611077401	0 -ohm resistor
		transistors:
Q6201Q6203	4882022N70$4882022 N 70$	NPN
		NPN
		Resistors:
R6201	0662057A89	47K
${ }_{\text {R6202 }}$	0662057A89	47k
R6623	O662057A ${ }_{\text {O60 }}$	${ }_{2}^{20 \mathrm{~K}}$
R6205	0662057A59	2.7 K
R6206	0662057A59	2.7 K

LIGHT
COMPONENTS SIDE

HEAVY
COMPONENTS SIDE

15-WATT POWER AMPLIFER COMPONENT LOCATIONS

