

MICOR[®] Community Repeater

406-420 & 450-512 MHz

68P81025E55-B THIS MANUAL HAS BEEN DISCONTINUED

Note: 68P81025E50 is the Micor UHF Base and Repeater Station service manual

MICOR

Community Repeater 406-420 & 450-512 MHz

CONTENTS

. ...

SECTION								-										NUMBER
Specifications	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v, vi vii vii
DESCRIPTION · · · · · .	•	•••		•		•	•		•	•	•	•					•	68P81026E92
Introduction	•	• •		•		•												1 1 3
AUDIO FILTER BOARD	•		•		•	•		•		•		•						68P81013E67
Description Installation Schematic Diagram and Parts Circuit Board Detail	Lis	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 1 1 2
INSTALLATION AND OPERAT	101	Ν.											•			•		68P81026E79
Installation	neck	 : List	•	•	•	•	•	•			•	•				•	•	1 1 2 3
FUNCTIONAL DESCRIPTION	•		•								•	•	•		•		•	68 P 81026E93
Introduction Retransmitted tone "Private-L Retransmitted "Digital Private	ine -Li	 '' Sigi .ne Si	nal gna	Op 1 C	Dera Dpe	tio rati	n. ion	•	•	•	•	•	•	•	•	•	•	1 1 1
Cross-Code Operation (Option Single Tone Operation (Option Detailed Functional Diagram	al) al)	•••	•	•	•	•	:	:	:	•	•	•	•	•	•	·	•	1 1 2, 3, 4, 5
UNIFIED CONTROL CHASSIS	5							•										68P81026E87

CONTENTS continued on back of this page.

service publications

1301 E. Algonquin Road, Schaumburg, IL 60196

Copyright 1976 by Motorola, Inc. Printed in U.S.A. 11/5/76-NPC

68P81025E55-B

SECTION

NUMBER

-

.

•

.

MODULES

. ...

SQUELCH GATE MODULE	•	68P81015E33
STATION CONTROL MODULE	•	68P81015E31
MASTER DECODER MODULE	•	68P81026E88
TONE "PRIVATE-LINE" FOUR-USER CONTROL MODULES .	•	68P81026E83
"DIGITAL PRIVATE-LINE" FOUR- & TWO-USER CONTROL MODULES	•	68P81026E81
TIME-OUT TIMER MODULE		68P81015E41
DIODE LOGIC MODULE,	•	68P81026E84
MULTIPLE TONE "PRIVATE-LINE" ENCODER MODULE	•	68P81026E89
MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER MODULE	•	68P81026E86
SINGLE TONE DECODER MODULE	•	68P81002E96

в

PERFORMANCE SPECIFICATIONS

GENERAL

Frequency Range 406-420 MHz, 450-512 MHz No. of Frequencies: 1

406-420 MHz 450-470 MHz	MINIMUM CONTINUOU S	MAXIMUM	POWER IN PU REQUIREMEN		DC POWER	
MODEL SERIES	RF POWER OUTPUT	FINAL INPUT POWER	STANDBY 121 V, 60 Hz	TRANSMIT	STANDBY	TRANSMIT
C54RCB	45 W	120 W	.89 amp.	121 V, 60 Hz 3.8 amp.	1.5 amp.	13.6 V'DC 17.9 amp.
	40 W		-	F -	E.	F *
C64RCB	75 W	180 W	.85 amp.	6.1 amp.	1.5 amp.	27.0 amp.
470-512 MHz						
MODEL SERIES						
C54RCB	40 W	NOTE	.89 amp.	NOTE	1.5 amp.	NOTE
C64RCB	60 W	NOTE	. 85 amp.	NOTE	1.5 amp.	NOTE

NOTE: Value same as comparable 450-470 MHz model except as reduced to meet E.R.P. requirements

CABINET	DIMENSION (INCHES)	APPROXIMATE SHIPPING WEIGHT (LBS)				
41-Inch "Compa-Station" Indoor Cabinet	22 W x 41 H x 10 D	190 (86 kg)				
46-Inch "Compa-Station" Outdoor Cabinet	22 W x 46 H x 20 D (including Rain Shields)	180 (82 kg)				
Metering	circuits for tuning and chec					
	A single scale, 0-50 microampere meter with 2,000 ohms equivalent series resistance or Motorola portable test set can be used to measure all circuits essential to tuning and checking.					

TRANSMITTER

RF POWER OUTPUT	406-420 MHz 450-470 MHz 470-512 MHz	75 W 45 W 75 W 45 W 60 W 40 W				
OUTPUT IMPEDANCE		50 öhms				
OSCILLATOR FREQUENC	Y STABILITY	Channel element maintains oscillator frequency within ±0.0002% from -30°C to +60°C ambient (+25°C reference)				
TRANSMITTER SIDE BAN	D NOISE	85 dB @±25 kHz 100 dB @±1 MHz				
SPURIOUS & HARMONICS	(CONDUCTED)	More than 85 dB below carrier				
MODULATION		15F2 and 16F3: ±5 kHz for 100% at 1000 Hz				
AUDIO SENSITIVITY		Local: 0.120 volt ±3 dB for 60% maximum deviation at 1000 Hz.				
FM NOISE		55 dB below 60% system deviation at 1000 Hz				
AUDIO RESPONSE		+1, -3 dB from 6 dB/octave pre-emphasis, 300- 3000 Hz, referenced to 1000 Hz				
AUDIO DISTORTION		Less than 2% at 1000 Hz; 60 % system deviation				

PERFORMANCE SPECIFICATIONS CONTINUED ON BACK OF PAGE

PERFORMANCE SPECIFICATIONS (CONT'D)

"SENSITRON" RECEIVER							
CHANNEL SPACING	25 kHz						
EIA MODULATION	±7 kHz minimum						
ACCEPTANCE							
FREQUENCY	AFC channel element maintains receiver frequency within $\pm 0.0002\%$ of						
STABILITY	reference frequency from -30°C to +60°C ambient temperature (+25°C						
	reference). (Optional ±0.0002% non-AFC channel element also available.)						
INPUT IMPEDANCE	50 ohms						
20 dB							
SENSITIVITY QUIET-	0.5 uV						
ING							
EIA	0.35 uV						
I SINAD							
SELECTIVITY	-90 dB $@\pm 25$ kHz						
(EIA SINAD)							
EIA SINAD	-85 dB						
INTERMODULATION							
SPURIOUS AND	100 dB minimum						
IMAGE REJECTION							
SQUELCH							
SENSITIVITY							
CARRIER SQUELCH							
(adjustable)	.25 uV or less at threshold						
TONE "PRIVATE-LINE"							
SQUELCH	.25 uV or less						
"DIGITAL PRIVATE-LINE"							
SQUELCH	.25 uV or less						

FCC LICENSE DESIGNATION

	TRANSMITTE	R					
MODEL	450-470 MHz	470-494 MHz	494-512 MHz				
C64 Series							
75 Watt	CC4224C						
60 Watt		CC4224C-1	CC4224C-2				
C54 Series							
45 Watt	CC4223C						
40 Watt		CC4223C-1	CC4243C-2				
	RECEIVER						
Non-Shifted IF	RC0	080					
Shifted IF	RC0	RC0082					

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

EPS-18271-B

SAFETY INFORMATION

The United States Department of Labor, through the provisions of the Occupational Safety and Health Act of 1970 (OSHA), has established an electromagnetic radiation safety standard which applies to this equipment. Normal use of this radio will result in exposures far below the OSHA limit. However, the following precautions are recommended:

DO NOT approach the antenna closer than four inches for omni-directional antennas or four feet for all other antennas when the transmitter is operative.

DO NOT operate the transmitter unless all rf connectors are secure and any open connectors are properly terminated with a leakproof load.

NEPS-21233-0

<section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header>	ITEM DESCRIPTION ITEM DESCRIPTION EXCITER DARDO 1035, 51-100 MED FORMERLY TLD5231A EXCITER DARDO 1035, 51-100 MED FORMERLY TLD5231A EXCITER DARDO 1035, 51-100 MED EXCITER DARDO 1036, 51-100 MED EST BANDEASS FLITER (105, 6-100, 6 MED) IST BANDEASS FLITER (105, 6 MED) IST BAN	Image: Station Model chart Im
MODEL ITEM DESCRIPTION TLE1721B EXCITER/IST BANDPASS FILTER TLE1723B (436-420 MH2) FORMERLY TLE1721A TLE1723B (450-470 MH2) FORMERLY TLE1723A TLE1723B (490-430 MH2) FORMERLY TLE1723A TLE1725B (494-512 MH2) FORMERLY TLE1723A TLE1601A (406-420 MH2) FORMERLY TLE172A TLE1603A (450-470 MH2) TLE1604A (470-494 MH2) TLE1605A (494-512 MH2) TLE1605A (494-512 MH2) TLE1605A (494-512 MH2) TLE1605A (494-512 MH2) TLE1673A 490-470 MH2 TLE1673A 490-470 MH2 TLE1673A 494-512 MH2 TLE1673A 494-512 MH2 TLE1711A (406-420 MH2 75 W) TLE1711A (406-420 MH2 75 W) TLE1713A (450-470 MH2 75 W) TLE1714A (406-420 MH2 75 W) TLE1714A (406-420 MH2 75 W) TLE1714A (450-470 MH2 75 W) TLE1714A (450-470 MH2 75 W) TLE1713A (450-470 MH2 75 W)	<complex-block><complex-block></complex-block></complex-block>	NUME NUME <th< td=""></th<>

~

*

(*************************************	FACTORY-INSTALLED OPT	IONS	
OPTION PLAN		PUBLICATI	ON REFERENCE
NUMBER OR	DESCRIPTION	APPLICABLE	PART NUMBER
OPTIONAL KIT	DESCRIPTION	SECTION WITHIN	OF SEPARATE
NUMBER		THIS MANUAL	PUBLICATION
	SINGLE TONE	_	
TLN1181A	Single-Tone Decoder Module	68P81002E96	None
EVI	ANDED "DIGITAL PRIVATE-LINE" CAPAC		A
TRN6166A	"Digital Private-Line"4-User Control Module	(up to 16 codes)	
TRN6326A	"Digital Private-Line"2-User Control Module	68D81026E81	None None
TRN6005A	Code Plug	68P81026E81	
		· · · · · · · · · · · · · · · · · · ·	None
	ANDED TONE "PRIVATE-LINE" CAPACITY		
TLN1685A	Tone "Private-Line" 4-User Control Module	68P81026E83	None
TLN8381A	"Vibrasponder" Resonant Reed	68P81026E83	None
	TONE "PRIVATE-LINE" CROSS-CODE (up t	- 4 (-)	
TRN6327A	Diode Logic Module	68P81026E84	
TLN5744A	Multiple Tone "Private-Line" Encoder Mod.		None
TLN6824A	"Vibrasender" Resonant Reed	08P81026E89	None
•		I	None
	DIGITAL PRIVATE-LINE" CROSS-CODE (up		
TRN6327A	Diode Logic Module	68P81026E84	None
TRN6413A	Multiple "Digital Private-Line" Encoder Mod.	68P81026E86	None
TRN6005A	Code Plug	68P81026E81	None
FVD	ANDED UDICITAL DDIVATE LINEU CDOCC		\
TRN6327A	ANDED "DIGITAL PRIVATE-LINE" CROSS-C Diode Logic Module	68P81026E84	
TRN6413A	<u> </u>		None
TRN6005A	<u>Multiple "Digital Private-Line" Encoder Mod.</u> Code Plug		None
TRN6326A	"Digital Private-Line"2-User Control Module	68P81026E81	None
· · · · · · · · · · · · · · · · · · ·			None
	ANDED "DIGITAL PRIVATE-LINE" CROSS-	CODE (up to 8 codes	s)
TRN6327A	Diode Logic Module	68P81026E84	None
TRN6413A	Multiple "Digital Private - Line" Encoder Mod.	68P81026E86	None
TRN6005A	Code Plug	68P81026E81	None
TRN6166A	"Digital Private-Line"4-User Control Module	68P81026E81	None
	MIXED CROSS-CODE (up to 4 tones and 4	· · · · · · · · · · · · · · · · · · ·	
TRN6327A	Diode Logic Module	68P81026E84	
TLN5744A	Multiple Tone "Private-Line" Encoder Mod.		None
TLN6824A	"Vibrasender" Resonant Reed	68P81026E89	None None
TRN6413A	Multiple "Digital Private-Line" Encoder Mod.	68P81026E89	
TRN6005A	Code Plug	68P81026E81	None
TRN6166A			None
or	"Digital Private-Line"4-User Control Module	00P01020E81	None
TRN6326A	"Digital Private-Line"2-User Control Module	69001026002	News
INNOLOA			None
	MISCELLANEOUS (NOTE 2	· · · · · · · · · · · · · · · · · · ·	Installation Sec.
C27	46-Inch Outdoor Cabinet	None	of68P81025E50
C38	120/220/240-Volt AC 50/60 Hz	None	68P81104E92
	Power Supply		_ <i>,</i>
C28	120-Volt AC/12-Volt DC Power Supply	None	68P81104E92
C180	60-Inch Indoor Cabinet	None	Installation Sec.
<u> </u>	(allows installation of duplexer)		of 68P81025E50
C181, 182, 183	Duplexer (Note 3)	None	68P81102E96
TLN1740A	DC Metering W/Monitor Intercom		Metering/Intercom
	(Note 4)		Sec.68P81025E50
TLN8381A	"Vibrasponder" Resonant Reed	68P81026E83	None
TRN6005A	Code Plug	68P81026E81	None
TRN6193A	Transmitter Shield Kit	None	None
TRN6194A	Receiver Shield Kit		
		None	None

FACTORY-INSTALLED OPTIONS

NOTES:

1. Mixed cross-code option is applicable to tone "Private-Line" stations only.

2. All tone "Private-Line" stations must incorporate the desired quantity of separately ordered "Vibrasponder" resonant reeds as required (used in four-user control modules). All "Digital Private-Line" stations must incorporate the desired quantity of separately ordered code plugs as required (used in four- and two-user control modules).

3. Duplexer option also requires the 46-inch outdoor cabinet option.

4. Intercom feature included with dc metering option not functional with these community repeater (RT) stations.

DESCRIPTION

1. INTRODUCTION

repeater without listening to all other subscribers. Each subscriber in the system is assigned an exclusive "Private-Line" tone frequency or binary code. The "Private-Line" tone or binary code signals used by each subscriber are decoded for access to the repeater. Once access to the repeater is obtained, the "Private-Line" tone or binary code and the message audio are retransmitted. The stations operate in the 406 to 420 MHz or 450 to 470 MHz frequency range with an rf output of 75 or 45 watts; or in the 470 to 512 MHz frequency range with an rf output of 60 or 40 watts.

1.2 The basic models decode up to four "Private-Line" tones or four "Digital Private-Line" binary codes. Optional modules are available to increase code capacity and/or to provide cross-coding (transmit a different PL code than received). Tone "Private-Line" stations can be expanded to 8, 12 or 16 tones, or a mixture of tone "Private-Line" and "Digital Private-Line" codes is possible in any multiples or four codes of each type up to a maximum of 16 codes. Optional modules also provide cross coding of up to four tone "Private-Line" and four "Digital Private-Line" codes. Standard options do not permit cross coding from tone "Private-Line" to "Digital Private-Line" codes or vice versa. "Digital Private-Line" stations can be expanded to 8, 12 or 16 binary codes, and cross coding of up to 8 binary codes.

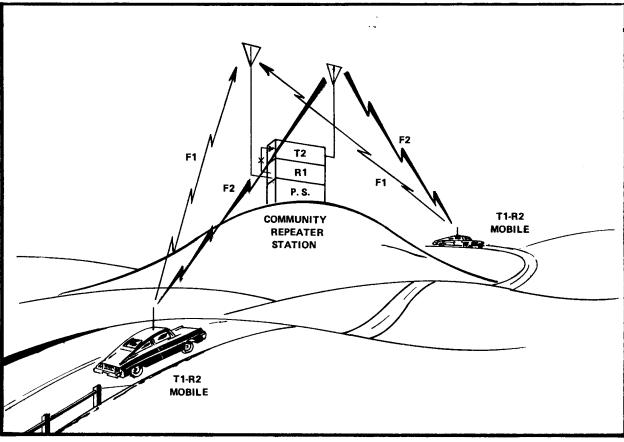
- 1.3 Optional equipment also is available for local metering, single tone decoding, and emergency power reverting, where emergency power is available from a 12-volt battery supply in case of an ac power failure.
- 1.4 The station cabinets are of rugged steel construction with front and rear doors that are easily removed for servicing. The compact cabinet size permits shelf mounting in addition to the standard floor mounting.

1.5 The station is constructed so that all metering controls are accessible without interrupting communications. Switches are provided for placing the station under local control while servicing.

1.6 An audio filter board is used with tone "Private-Line" stations to remove PL tones from receiver audio. This prevents the received PL tone from being transmitted via the audio path (an alternate PL tone path is already provided).

2. APPLICATION

2.1 Motorola community repeater (RT) stations are for use in two-way FM radio communications systems where extended range operation is required or where natural or man-made limitations to direct communications are encountered. The station is used primarily for "mobile relay" repeater applications. Refer to Figure 1 for a typical example of this application.


2.2 In a "mobile relay" circuit, signals as received by the repeater receiver from one mobile unit are rebroadcast to other mobiles by the repeater transmitter. Mobiles operating in a system of this type must employ a transmitter and receiver of different frequencies. The repeater

service publications

1301 E. Algonquin Road, Schaumburg, IL 60172

2/18/76-NPC

BEPS-2039-0

Figure 1. Typical Community Repeater Application

transmitter and receiver will consequently be aligned on exactly the reverse frequencies of the transmitters and receivers of the mobile units:

2.3 The station functions automatically; i.e., all control functions for the station are initiated via the rf carrier. As a signal is received by the receiver, the transmitter is automatically actuated. The output of the receiver is fed to the transmitter modulator input circuit so that the received signal is rebroadcast at greatly increased power on the repeater transmitter frequency.

3. DESCRIPTION OF ITEMS

3.1 GENERAL

Information pertaining to the transmitter, receiver and power supply is described in accompanying instruction manual 68P81025E50.

3.2 UNIFIED CONTROL CHASSIS

3.2.1 Transmitting and receiving controls are contained on plug-in modules inserted into the unified control chassis. A metering receptacle is provided on the unified chassis interconnect board for connection of a Motorola **S**1056B to S1059B Series Portable Test Set, or equivalent. This receptacle permits microphone and received audio monitoring at the station.

NOTE

Metering receptacles are also provided on the various transmitter and receiver circuit boards for tuning and alignment.

3.2.2 The basic community repeater (RT) station includes the following plug-in modules: station control, squelch gate, timeout timer, one tone "Private-Line" or "Digital Private-Line" four-user control, and master decoder.

3.3 STATION CONTROL MODULE

The station control module circuitry controls transmitter keying, PL disable, adjusts exciter audio level, and (for tone PL applications only) amplifies receiver discriminator signals.

3.4 SQUELCH GATE MODULE

The squelch gate module produces an output that activates the transmitter when a carrier signal is received that has a sufficiently high signal-to-noise ratio and a proper PL tone or code. It also provides a 1-8 second transmit drop-out delay interval.

3.5 TIME-OUT TIMER MODULE

This completely transistorized timer is used to turn off the transmitter after a predetermined transmission time for each message. It is adjustable in steps from 1/2 to 8 minutes.

3.6 TONE "PRIVATE-LINE" FOUR-USER CONTROL MODULE

This module contains four tone "Private-Line" decoder circuits and the necessary logic circuits to combine their outputs. The defeat switch disables the individual tone circuits as desired. One module is supplied and up to three additional four-user control modules can be added for maximum capability of 16 tones.

3.7 "DIGITAL PRIVATE-LINE" FOUR-USER CONTROL MODULE

This module contains four "Digital Private-Line" binary-code decoder circuits and the necessary logic circuits to combine their outputs. The defeat switch disables the individual code circuits as desired. One module is supplied and up to three additional four-user control modules can be added for maximum capability of 16 binary "PL" codes.

3.8 MASTER DECODER MODULE

This module routes PL tones or codes from the receiver discriminator through a transmission gate (if proper PL tone or code is simultaneously decoded by a four-user control module) to exciter audio input thus providing required retransmission. In optional cross-code operation, this module routes station generated cross-coded PL tone or code and blocks received PL tone or code.

3.9 SINGLE TONE DECODER (OPTIONAL)

The single tone decoder output enables the individual PL tone/code outputs in the four-user control modules. The correct single tone signal must be received before the PL tone/code can open the circuits for retransmission of the message.

3.10 BUILT-IN METERING KIT (OPTIONAL)

The metering kit provides a convenient test meter with switching facilities, thereby eliminating the need for a portable test set. This chassis also contains a speaker for local monitoring of receiver audio; a convenience for testing and adjusting the station.

3.11 46-INCH OUTDOOR CABINET (OPTIONAL)

The 46-inch outdoor cabinet allows the station to be installed at any convenient location (indoors or outdoors).

3.12 60-INCH INDOOR CABINET (OPTIONAL)

The 60-inch cabinet provides additional mounting space if needed.

3.13 MULTIPLE CODE ENCODERS (OPTIONAL)

The multiple encoders generate the PL tone or code for cross-code operation.

3.14 DIODE LOGIC MODULE (OPTIONAL)

The diode logic module determines the particular PL tone or code generated (crosscoded) by the applicable mutliple encoder.

AUDIO FILTER BOARD

MODEL TLN4581A

1. DESCRIPTION

J201

This audio filter circuit board can be used in carrier squelch radios to bypass the low frequency background noise of a PL tone present on the received carrier. The high-pass characteristics of this filter will allow voice signals above 300 Hzto pass but will block the lower frequency PL tones. Since this filter is connected in series with the audio signal path, the PL tones will not be heard in the speaker.

C814

C815 ₭ .022 uF

LBOZ 61

.033uF

AEPS -7136-0

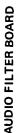
C8/6

Ò.ł#F

C817 O.IuF

803

2. INSTALLATION

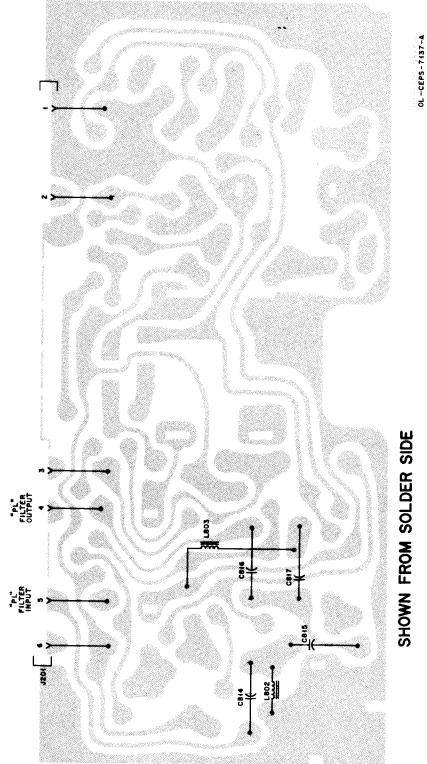

Physically, the audio filter board is plugged into the receiver audio and squelch board in the location normally occupied by the "Private-Line" decoder board in PL radio sets.

NOTE WHEN USING THE AUDIO FILTER BOARD, JU201 ON THE RECEIVER AUDIO AND SQUELCH BOARD MUST BE REMOVED.

|--|

PARTS LIST

TLN4581A AL	idio Filter Board	PL-1345-A
C814 C815 C816 C817	8-82905G08 8-82905G02 8-82905G30 8-82905G30 8-82905G30	CAPACITOR, fixed: uF ±10%: 50 V; unl. stated .033 .022 0.1 0.1
J201	0-02,05050	for reference only
L802 L803	24-84003A01 24-84003A01	COIL, RF: choke; 6 H 6 H
	NON-REFERE	NCED ITEMS
	9-83011H01	TERMINAL, pin: female; 6 reg'd.
	3-138162	SCREW, lock: No. 4 x 3/8"; 2 req'd.
	42-84284B01 7-84223B01	RETAINER, Nylon: 2 req'd. BRACKET, retainer



INC. OROLA SERVICE PUBLICATIONS

1301 E. ALGONQUIN ROAD

Communications Division

SCHAUMBURG, ILLINOIS 60172

Audio Filter Board Circuit Board Detail Motorola No. PEPS-7138-A 2/23/76-NPC

INSTALLATION AND OPERATION

1. INSTALLATION

Installation for these community repeater (RT) stations is the same as that described for comparable non-wire line repeater (RT) models in manual 68P81025E50.

2. PREOPERATIONAL ADJUSTMENTS

2.1 INTRODUCTORY NOTES

2.1.1 If the station is equipped with a singletone decoder module for repeater access, unplug the single-tone decoder during adjustments.

2.1.2 Unplug the time-out timer module during all adjustments. Be sure to return module after adjustments are made.

2.1.3 The repeater must be PL disabled for repeater level setting adjustments.
This PL disable disables the squelch gate as well as the receiver. Be sure to return the squelch gate and station control module to normal PL operating positions.

2.2 REPEATER LEVEL SETTING

2.2.1 <u>Audio</u>

Step 1. Connect transmitter to wattmeter or load.

Step 2. Connect an 8-ohm speaker or load to unified control chassis at J4-1 (Hi) and -12 (Low).

Step 3. Set the station control module to PL DISABLE.

Step 4. Set the receiver squelch control at squelch threshold.

Step 5. Set the squelch gate for "carrier-squelch" operation (PL disable) by moving JU14 and JU15 from PL position to CS position. The receiver is now PL disabled along with the squelch gate.

Step 6. Inject an on-frequency carrier signal into the receiver antenna input. Adjust the signal level to 20 dB quieting.

Step 7. Adjust the REPEATER SQUELCH KEY control on the squelch gate module so the transmitter just keys.

Step 8. Modulate the receiver input with a 1000-Hz tone at ±4 kHz deviation. Adjust the RE-PEATER LEVEL control on the squelch gate module so the exciter audio input is the value stamped on the exciter (modulator sensitivity+6 dB or approximately ±4 kHz transmitter deviation).


Step 9. Return station control module to PL operation.

Step 10. Return JU14 and JU15 on the squelch gate module to the PL position.

2.2.2 <u>Tone "Private-Line" Output Level</u> Adjust (Retransmit)

Step 1. Adjust the master decoder only after all other modules have been adjusted.

Step 2. Inject an on-frequency carrier signal which is modulated with a corresponding PL tone (with respect to a chosen PL tone from the 4-user control module being used)at ±750 Hz deviation into the receiver. The transmitter will key. Adjust R827 for a transmitted PL tone of ±750 Hz deviation.

service publications

1301 E. Algonquin Road, Schaumburg, IL 60172

2.2.3 <u>Tone "Private-Line" Output Level</u> Adjust (Cross Code)

Step 1. Adjust the master decoder only after all other modules have been adjusted.

Step 2. Inject an on-frequency carrier signal which is modulated with a corresponding PL tone (with respect to a chosen PL tone from the 4-user control module being used for crosscoding) at ± 750 Hz deviation into the receiver. The transmitter will key. Adjust R820 for a transmitted PL tone of ± 750 Hz deviation.

2.2.4 <u>"Digital Private-Line" Code Output</u> Level Adjust (Retransmit)

Step 1. Adjust the master decoder only after all other modules have been adjusted.

Step 2. Inject an on-frequency carrier signal which is modulated with a corresponding "Digital Private-Line" code (with respect to a chosen code from the 4-user control module being used) at ± 750 Hz deviation into the receiver. The transmitter will key. Adjust R830 for a transmitted binary "PL" code of ± 750 Hz deviation.

2.2.5 <u>"Digital Private-Line" Code Output</u> Level Adjust (Cross Code)

Step 1. Adjust the master decoder only after all other modules have been adjusted.

Step 2. Inject an on-frequency carrier signal which is modulated with a corresponding "Digital Private-Line" code (with respect to a chosen code from the 4-user control module being used for

3. PREOPERATIONAL AND ROUTINE CHECK LIST

UNIT	STEP	CHECK
RECEIVER	1	Compare meter readings with the minimum values in the RECEIVER section of manual 68P81025E50. Realign if necessary.
	2	Measure signal level required for 20 dB quieting.
	3	Check that receiver squelch opens with each PL tone or code on carrier.
EXCITER-TRANSMITTER	4	Compare meter readings with minimum values in the EXCITER-TRANSMITTER section of manual 68P81025E50. Realign if necessary.
POWER AMPLIFIER	5	Tune and load to antenna.
SYSTEM ADJUSTMENTS	6	Measure power output of transmitter if required.
	7	Measure transmitter frequency and adjust if necessary.
	8	Measure deviation (equal input and output deviation of PL tone or code).
	9	Measure transmitter voice channel for proper deviation. Adjust IDC if necessary. (Master decoder module must be in position when check is made.)
	10	Measure exciter modulator sensitivity.
	11	Adjust receiver on frequency.
	12	Measure and adjust audio input to exciter.
	13	Check repeater operation.

BEFORE LEAVING STATION CHECK THE FOLLOWING

- 1. All external power switches ON.
- 3. Cabinet doors locked.
- 2. Local speaker OFF (if applicable).
- 4. Cabinet vents unobstructed.

cross coding) at ± 750 Hz deviation into the receiver. The transmitter will key. Adjust R824 for a transmitted binary "PL" code of ± 750 Hz deviation.

2.3 TIMING ADJUSTMENTS

2.3.1 The station is equipped with a timeout timer module that prevents unintentional continuous transmission. The timing jumper on the time-out timer module can be set for 1/2, 1-, 2-, 4-, or 8-<u>minute</u> operation.

2.3.2 The time-out timer will reset to its preset timed interval each time a new input signal arrives at the radio whether or not the dropout delay generator has shut off the transmitter.

2.3.3 The dropout delay generator prevents the transmitter from shutting off during loss or excessive fade of input signal for the length of time preset.

2.3.4 The dropout delay generator can be set for 1-, 2-, 4-, or 8-<u>second</u> operation.

4. OPERATING INSTRUCTIONS

4.1 UNATTENDED OPERATION

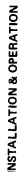
Once power is applied and the station is properly adjusted, the repeater station operates entirely unattended. When the receiver rf input is of sufficient level, the transmitter is keyed and the signal is retransmitted (or cross coded). 4.2 · LOCAL CONTROL

The station may be operated locally in the following ways: (also refer to Table 1).

4.2.1 To Monitor

Step 1. Connect an 8-ohm speaker across J4-1 and -12 or connect a Motorola portable test set to J3.

Step 2. PL disable station control module to receive all codes and tones.


4.2.2 <u>To Transmit</u>

Step 1. Connect a microphone (Motorola Model TMN6020A or equivalent) to J4-3, -14, -15, -5, & -16 on unified control chassis interconnectboard or connect a Motorola Portable test set to J3.

Step 2. Pl tones or codes may be transmitted by connecting tone or code to TB3-20 (exciter hi) and 16 (exciter 10).

CONTROL	POSITION	FUNCTIONS POSSIBLE
	Normal (not Actuated)	Normal receive or standby mode of operation.
XMIT	Actuated (hold to right)	Turns on transmitter with no modulation. Use test micro- phone connected to unified chassis to modulate transmitter.
	Normal (not Actuated)	Only PL tone-coded or binary-coded, on-frequency, signals accepted by receiver.
"PL DISABLE"	Actuated (hold to right)	All on-frequency signals accepted by receiver.

	TABLE 1		
LOCAL CONTROLS	(STATION	CONTROL	MODULE)

1. INTRODUCTION

1.1 The basic function of a community repeater is to retransmit signals received from its subscribers. When the control circuitry detects a signal with the proper signal-to-noise ratio and one of the subscriber PL tones or binary codes (and if so equipped, the proper single tone frequency) it keys the transmitter and applies both the receiver audio and PL tone or binary code to the modulator.

1.2 The standard community repeater stations can retransmit up to four "Private-Line" tones or four "Digital Private-Line" codes, depending on station model. Standard factory installed options allow "Private-Line" code capacity to be expanded to 16; or to provide cross-code capability with a "Digital Private-Line" capacity of up to eight codes or with a tone "Private-Line" capacity of up to four tones. Cross coding permits a received PL tone or code signal to cause a different PL tone or code signal to be transmitted. Although it is possible to cross-code up to four tone PL signals or eight "Digital Private-Line" signals, options are not available to exchange tone PL signals for "Digital Private-Line" signals or viceversa. It is possible, however to cross code up to four tone PL signals and up to four "Digital Private-Line" signals in the same station.

2. RETRANSMITTED TONE "PRIVATE-LINE" SIGNAL OPERATION

2.1 Refer to the detailed functional diagram starting on the back of this page for the following discussion. Up to four "Private-Line" tones can be detected by the station. Only the timeout timer, squelch gate, station control, master decoder, and four-user control modules are incorporated in this standard application.

2.2 Tone "Private-Line" signal from the receiver discriminator is applied to station control module pin 21, amplied, and then routed to master decoder module pin 23. In the master decoder module, the tone signal is passed through a bandpass filter, buffer amplifier Q801, amplifier Q802, and level control R827 to the input side of transmission gate U801C. This gate inhibits tone signal passage to the transmitter for retransmission until the gate is enabled as

follows. The tone signal applied to the transmission gate is also applied to the same module's output pin 7, and routed to four-user control module input pin 3. Here, the tone activates an applicable "Vibrasponder" resonant reed. Any activated reed causes four-user control module output pin 24 to go low which is in turn applied back to the master decoder module at pin 17. This low is inverted to a high by Q806 and applied to transmission gate U801C which then passes the tone signal waiting at the gate on to the transmitter for retransmission. A 150 millisecond drop-out delay network is included in the master decoder module which holds on the transmitter 150 millisecond after loss of P-T-T during which time a "reverse burst" "Private-Line" signal is transmitted which immediately squelches applicable receiver(s).

3. RETRANSMITTED "DIGITAL PRIVATE-LINE" SIGNAL OPERATION

3.1 Refer to the detailed functional diagram starting on the back of this page for the following discussion. Functionally, operation is very similar to that described for retransmitted tone "Private-Line" signals. Up to four binary codes can be detected by the "Digital Private-Line" station. Modules used in the tone "Private-Line" station are the same as used with the tone "Private-Line" station except that a "Digital Private-Line" four-user control module is used in place of the tone "Private-Line" four-user control module.

3.2 A binary PL signal from the receiver

discriminator is applied to master decoder module pin 22 and passes through a low pass filter to data conditioner U802 circuit and following inverter/level shifter stage Q814. The data conditioner circuit "squares" input data and the inverter/level shifter stage inverts and limits data shifts to about 6.0 volts peak-topeak. The "conditioned", "shifted" code signal is then applied to a 140 Hz active lowpass filter via buffer Q815. From Q815, the code signal is level-set by R830 and applied to transmission gate U801B which inhibits passage to transmitter until the gate is enabled. The gate is enabled as

follows. The code signal applied to transmission gate U801B is also applied to master decoder module output pin 4, and routed to "Digital Private-Line" four-user control module pin 2 where it is detected by an applicable decoder (U1-U4). An activated decoder causes fouruser control module output pin 13 to go low which is in turn applied back to the master decoder module at pin 13. This low is inverted to a high by Q807 and applied to transmission gate U801B which then passes the code signal waiting at the gate to the transmitter for retransmission. As with tone "Private-Line" signal retransmission, a turn-off delay is provided during which time a turn-off code is transmitted which immediately squelches applicable receivers. The drop-out delay interval for "Digital Private-Line" signals is, however. 250 milliseconds.

4. CROSS-CODE OPERATION (OPTIONAL)

4.1 INTRODUCTION

Optional cross-code operation allows 4.1.1 a different "Private-Line" tone or binary code signal to be transmitted than is received.

NOTE

Exchanging tone "Private-Line" signals for "Digital Private-Line" signals or vice versa is not available as an option. However, it is possible to cross code up to four tone PL signals and up to four binary PL signals in the same station.

4.1.2 The optional modules required to provide up to four cross-code capacity are the diode logic module and a multiple encoder module. The diode logic module determines the specific code signal to be generated by the applicable PL encoder. To increase "Digital Private-Line" cross-code capacity to a maximum eight. an additional four-user control module is required to detect the additional code signals.

4.1.3 Any four-user control module used with cross coding must be located in either position 8 or 9 on the unified control chassis and jumpers or diodes in the modules must be removed as explained later.

4.2 TONE "PRIVATE-LINE" CROSS-CODE OPERATION

4.2.1 As with retransmitted tone "Private-Line" signals, tones to be crosscoded are detected by an applicable "Vibrasponder" resonant reed in the four-user control module. However, a retransmit low function does not appear at output pin 24 because an applicable diode (CR1-CR4) is removed.

NOTE

Any of these diodes not removed results in a retransmit function applied to output pin 24 when the applicable tone is detected. The retransmit function causes the same tone to be retransmitted.

4.2.2 To simplify the following discussion, only tone "A" is mentioned but the operation, in general, is also applicable to tone "B", "C", and "D". Cross coding requires that the four-user control module be located in position 8 and that diode CR1 be removed from the module (to disable the retransmit "A" function). When tone "A" is detected, four-user control module output pin 19 goes low which is applied to diode logic module input pin 2. This low causes a new tone PL signal to be generated which is routed to the transmitter as follows. With pin 2 of the diode logic module low (and jumper JU1 in), a corresponding low is routed out pin 3 to multiple tone "Private-Line" encoder module input pin 2. This low causes the encoder to generate a different PL tone which is routed out of the module at pin 7 to master decoder module input pin 14. Here it is level set by R820 and applied to transmission gate U801A but must wait for a gate enable function that must come from the diode logic module. The low at diode logic module input pin 2 which caused the new PL tone to be generated also enables the

transmission gate. The low is inverted to a high at output pin 7 which is applied to master decoder module input pin 8. This enables transmission gate U801A passing the new (crosscoded) PL tone to the transmitter. The originally detected tone was also applied to transmission gate U801C but was not applied to the transmitter because that gate did not become enabled. The diode logic module also supplies a 150 millisecond time delay interval to allow for reverse burst transmission.

"DIGITAL PRIVATE-LINE" CROSS-4.3 CODE OPERATION

"Digital Private-Line" binary codes to be cross-coded are applied to "Digital Private-Line" four-user control module input pin 2 and detected by an applicable decoder circuit as with retransmit type operation. However, with cross-code operation, a retransmit low function does not appear at output pin 13 because of jumpering differences. For example, a code "A" at "Digital Private-Line" four-user control module input pin 2 produces two output lows from switch inverter Q3. The low retransmit function is blocked because jumper JU13 is removed, but the low cross-code "A" function is routed out pin 19 to diode logic module input pin 2. From here, operation is the same as described for tone "Private-Line" cross-code operation except that a multiple "Digital Private-Line" encoder module is enabled instead of a multiple tone "Private-Line" encoder module. Also the diode logic module provides a 210 millisecond drop out delay interval to allow for turnoff code transmission. This gate enable function appears at pin 10 and is routed to master decoder module pin 10.

FUNCTIONAL DESCRIPTION

5. SINGLE TONE OPERATION (OPTIONAL)

5.1 INTRODUCTION

Single tone operation provides additional system security in that a proper received simple tone signal, in addition to a proper PL tone or code is required to key the station. A received single tone signal from the receiver discriminator is applied to single tone decoder module input pin 3. This causes a switched ground output (low) from output pin 17 which is applied to and controls four-user control module outputs.

5.2 SINGLE TONE USED WITH TONE "PRIVATE-LINE" OPERATION

In the tone "Private-Line" four-user control module, this low applied to pin 23 satisfies one half of AND gate Q3, Q6, Q9, and/or Q12 when applicable jumper(s) JU5, JU6, JU7, and JU8 are in and jumpers JU1, JU2, JU3, and JU4 are out. When a correct "Private-Line" tone signal is received with the single tone signal, the other half of the applicable gate is satisfied and the gate is then enabled. This causes the "Private-Line" tone signal to be either retransmitted or cross-coded as described previously.

5.3 SINGLE TONE USED WITH "DIGITAL PRIVATE-LINE" OPERATION

The single tone low applied to "Digital Private-Line" four-user control module input pin 23 is applied to four switch inverters Q3, Q5, Q7, and Q9 as determined by applicable jumpers JU2, JU4, JU6, and JU8 (corresponding jumpers JU1, JU3, JU5, and/or JU7 must be removed). When both the single tone signal and code enable functions are applied to an applicable switch inverter, the switch inverter is enabled which causes the code signal to be either retransmitted or cross-coded.

> 68P81026E93-A 2/23/76-NPC

	UNICHASSIS INTERCONNECT TABLE
Image: space of the space o	NIT SWITCH ANT SWITCH ANT SWITCH ANT SWITCH ANT SWITCH ANT SWITCH KEVED A- KEVED A- KEVED A- KEVED A- KEVED A- PT-T KEV TRANSMIT INHIBIT KEVED A- KEVED A- PT-T KEV TRANSMIT INHIBIT KEVED A- KEVED A- PT-T KEV TRANSMIT INHIBIT PE-RABLEFT OSC GND EREMETER IN MERT P-T-T INNOT FELO
2 STATION CONTROL 12 1/24 5 3 SQUELCH GATE 12 1/23 13 SINGLE TONE DECODER 12 1 1 5 MASTER DECODER 12 1 6 4-USER MODULE 12 1 7 4-USER MODULE 12 1 8 4-USER MODULE 12 1	1 1
9 4-USER MODULE 12 1 10 DIODE LOGIC MODULE 12 1 11 MULTIPLE TONE "PL" ENCODER 12 1 10 12 MULTIPLE TONE "PL" ENCODER 12 1 10 12 MULTIPLE "DIGITAL PRIVATE-LINE" 18 22 12 1 10 12 INDIVIDUAL PINS (P100-) 1.6 3.4 10 10	Image: Normal and the state of the stat
JUMPERS 7/8 4/6 5/7	2 9 5
J1 POWER SUPPLY 1 4 3 J2 RECEIVER 24 23/26 25 J3 TEST SET METER 6 5 J4 METERING 21 5 16 J5 TRANSMITTER 24 28 20 13	a b
TB1 NO CONNECTIONS TB2 HIGH CURRENT TB3 EXTERNAL 8 1 6	

NOTES:

- 1. POSITIONS 6-9 CAN BE USED FOR RETRANSMITTING "PL" SIGNALS. HOWEVER, WHEN CROSS-CODING "PL" SIGNALS, ONLY POSITIONS 8 AND 9 CAN BE USED, AND THEN, WHEN CROSS-CODING INVOLVES "PL" TONES, THE TONE "PRIVATE-LINE" 4-USER MODULE MUST BE IN POSITION 8.
- 2. A MAXIMUM OF EIGHT CODES CAN BE CROSS-CODED USING THE MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER, THE SPECIAL ENCODER (8 REEDS) OR THE STANDARD MULTIPLE TONE "PRIVATE-LINE" ENCODER AND THE STANDARD MOLLIPLE TONE PRIVATE-LINE" ENCODER. WHEN THE SPECIAL MULTIPLE TONE "PRIVATE-LINE" ENCODER IS USED, JU901 AND JU902 MUST BE REMOVED - THEY ARE IN FOR THE STANDARD MODULE. IF MIXED CROSS-CODING IS USED, THE MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER MUST USE ONLY THE LAST 4 CODE PLUG POSITIONS.
- 3. "DIGITAL PRIVATE-LINE" 4- & 2-USER MODULE JUMPER CONFIG-URATIONS JU1-JU2, JU3-JU4,JU5-JU6, AND JU7-JU8 ARE NEVER CONNECTED AT THE SAME TIME. JU1. JU3. JU5 AND JU7 ARE THE NORMAL CONNECTIONS. JU2, JU4, JU6 AND JU8 ARE CONNECTED WHEN THE REPEATER FURNISHES A GROUND INPUT TO PIN 23 FROM ANOTHER MODULE (SUCH AS A SINGLE TONE DECODER).
- 4. JUMPERS JU13, JU14, JU15 AND JU16 ON "DIGITAL PRIVATE-LINE" 4- &2-USER MODULES ARE CONNECTED WHEN THE RECEIVED CODE DATA IS TO BE RETRANSMITTED. IF NEW CODE DATA IS GENERATED FOR CROSS-CODE TRANSMISSION, THE CORRESPONDING JUMPER IS REMOVED.
- 5. DIODE LOGIC MODULE JUMPER COMBINATIONS JU1-JU2-JU3-JU4, AND JU5-JU6-JU7-JU8 CAN BE USED TO CROSS-CODE BINARY OR TONE "PL". THE CORRESPONDING JUMPERS ARE REMOVED DEPENDING ON THOSE 4-USER MODULES FILLING POSITIONS 8 AND 9.

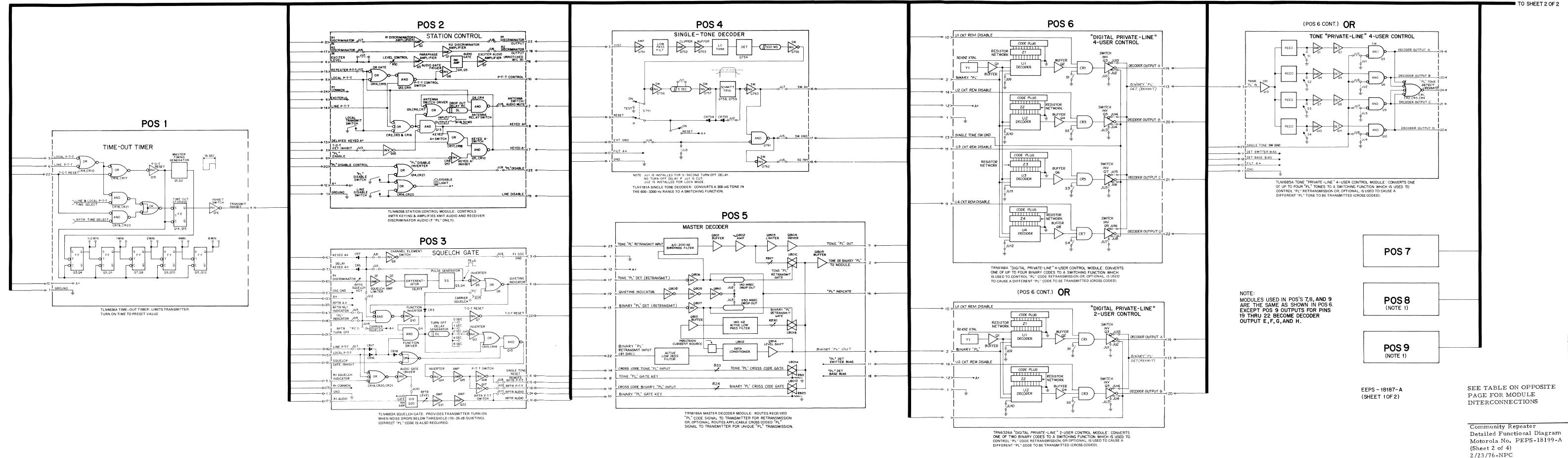
- 6. TONE "PRIVATE-LINE" 4-USER MODULE JUMPER COMBINATIONS JU1-JU5, JU2-JU6, JU3-JU7 AND JU7-JU8 ARE NEVER CONNECTED AT THE SAME TIME. JU1, JU2, JU3 AND JU4 ARE THE NORMAL CONNECTIONS. JU5, JU6, JU7 AND JU8 ARE CONNECTED WHEN THE REPEATER FURNISHES A GROUND INPUT TO PIN 23 FROM ANOTHER MODULE (SINGLE TONE DECODER)
- CR1, CR2, CR3 AND CR4 IN TONE "PRIVATE-LINE" 4-USER MODULE ARE NORMALLY CONNECTED, WHEN CROSS-CODING IS DESIRED THE CORRESPONDING DIODE IS REMOVED.
- 8. UNIFIED CONTROL CHASSIS CIRCUIT BOARD JUMPERS JU6 AND JU7 USED FOR A NOTCH FILTER SPECIAL APPLICATION. WHEN JU6 AND JU7 ARE USED, JU4, JU5 AND JU8 ARE REMOVED.
- 9. WHEN CROSS-CODING "PL" TONES, REMOVE R821. WHEN CROSS-CODING BINARY "PL" CODES, REMOVE R825 IN MASTER DECODER MODULE.
- 10. DIODE LOGIC MODULE---WHEN CROSS-CODING ONLY BINARY "PL" CODES, USE JU9 AND JU10 - REMOVE JU12. WHEN CROSS-CODING ONLY "PL" TONES, USE JU9 AND JU12 – REMOVE JU10. WHEN USING MIXED CROSS-CODING, USE JU10 AND JU12 - REMOVE JU9.
- 11. MULTIPLE TONE "PRIVATE-LINE" ENCODER IS REFERENCED IN 900 SERIES.

Community Repeater Detailed Functional Diagram Motorola No. PEPS-18199-A (Sheet 1 of 4) 2/23/76-NPC

JUMPER TABLE

	JU1 (OR JU901 – NOTE 11)	JU2 (OR JU902 – NOTE 11)	JU3 (OR JU903 – NOTE 11)	JU4 (OR JU904 – NOTE 11)	JU5 (OR JU905 – NOTE 11)	JU6	JU7	8UL	JU9	JU10	JU11	JU12	JU13	JU14	JU15	JU16	TIMING OPTIONS	OTHER NOTES
UNIFIED CONTROL CHASSIS CIRCUIT BOARD	IN	IN (FOR STD RESET W/O QUIETING)	IN (FOR STD RESET W/O SQUELCH)	IN (FOR NORMAL OPERATION)	IN (FOR NORMAL OPERATION)	NOTE 8	NOTE 8	IN (FOR NORMAL OPERATION)										
TIME-OUT-TIMER																	1/2, 1, 2, 4, 8 (MIN.)	
STA CONTROL MODULE	in	IN	IN	IN		MMMML 200	IN	IN	IN									
SQ. GATE MODULE			IN	IN "PL"	IN	IN	IN	IN	IN	iN	IN	IN	SELECTED DELAY	IN "PL"	IN "PL"		1, 2, 4, 8 (SEC.)	
SINGLETONE DECODER MODULE	IN (FOR 5 SEC. TURN– OFF DELAY)	IN (FOR LOCK MODE)	IN		IN	IN												
MASTER DECODER MODULE	IN (ONLY FOR TOTAL BINARY SYSTEM)	IN (ONLY FOR TOTAL TONE SYSTEM)																NOTE 9
"DIGITAL PRIVATE-LINE" 4- &2-USER CONTROL MODULE	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	IN	IN	iN	IN	NOTE 4	NOTE 4	NOTE 4	NOTE 4		
TONE "PRIVATE-LINE" 4-USER CONTROL MODULE	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6										NOTE 7
DIODE LOGIC MODULE	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 10	NOTE 10	IN (ONLY WITH 150 MSEC. DROP- OUT OPTION)	NOTE 10	IN (FOR 150 MSEC. DROP- OUT OPTION)					
MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER MODULE						9119179-5-5-1019199999999999999												
TONE PRIVATE-LINE" MULTIPLE NCODER MODULE	NOTE 2	NOTE 2	IN	IN														

HOW TO READ THIS TABLE


HIS TABLE SHOWS ALL INTERCONNECTIONS MADE BY THE PLATING ON BOTH SIDES OF THE TERCONNECT BOARD AND BY WIRE JUMPERS.

ALL PIN NUMBERS IN EACH VERTICAL COLUMN ARE ELECTRICALLY COMMON (INTERCONNECTED Y CIRCUIT BOARD PLATING).

D TRACE INTERCONNECTIONS FROM ANY STARTING POINT TO ALL OTHER COMMON POINTS ROCEED AS FOLLOWS:

- STEP 1. FIND THE MODULE POSITION OR CONNECTOR IN THE LEFT OR RIGHT HAND COLUMN OF THE TABLE.
- STEP 2. FIND THE DESIRED PIN NUMBER. ALL PINS OF A SPECIFIC CONNECTOR ARE LISTED IN THE LINE THAT EXTENDS TO THE RIGHT.
- STEP 3. NOTE THE FUNCTION OF THE DESIRED PIN. THE FUNCTION IS LISTED AT THE TOP OF THE COLUMN IN WHICH THE PINNE DESIRED FIN. THE FORCING IS LISTED AT THE FOR OF THE COLUMN IN WHICH THE PIN NUMBER APPEARS. ALL OTHER PINS LISTED IN THE SAME FUNCTION COLUMN ARE INTERCONNECTED. FOR EACH ENTRY IN THE FUNCTION COLUMN, TRACE BACK TO THE LEFT HAND COLUMN TO FIND THE MODULE OR CONNECTOR NUMBER. (SEE EXAMPLE.)
- STEP 4. * EQUALS FUNCTION SOURCE.

TATION CONTROL MODULE (MODULE POSITION 2) PIN 5 HAS THE FUNCTION LOCAL P-T-T WHICH IS INTERCONNECTED TO T-O-T (PIN 5), SQUELCH GATE (PIN 13), J3 (PIN 5), 14 (PIN 16), AND TB3 (PIN 6).

T	·····	·	······															UNIC	HASSI	SINIE	CONN	CI IA	SLE														
POSITION MODULE 1 TIME-OUT TIMER 2 STATION CONTROL 3 SQUELCH GATE 3 SQUELCH GATE 5 MASTER DECODER 6 4-USER MODULE 7 4-USER MODULE 8 4-USER MODULE 9 4-USER MODULE 10 DIODE LOGIC MODULE 11 MULTIPLE TONE "PL" ENCODER 12 MULTIPLE "DIGITAL PRIVATE-LINE	NE"18 22	12 1	*2	5 ANT SWITCH 5 ANT SWITCH 5 P-T-T KEY TRANSMIT INHIBIT 6 2 7 KEYED A-	6 *3	+ E COLLER LO E E XCITER LO DELA VED KEVED A DELA VED KEVED 24 24 24 24 24 24 24 24 24 24 24 24 24	*18 11	L-L-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J				*16 WHEN RE-TRA *17 WHET	*18	9 3 23 16	10 3 *17 3 *2	2 3 2 3 2 3	START	RETRANSMIT) (RE	C 23 23 23 23 23		DECODER OUTPUT F	DECODER OUTPUT G	DECODER OUTPUT H	AUDIO A+ 12-WATT PA METER -	12–WATT PA METER +		AUDIO HI		HERE ONLY ROSS-CODING	TY.	0 *3 *19	MULTI *PLC MULTI *PLC MULTI *PLC MULTI *PLC 50 50 50 50 50 50 50 50 50 50 50 50 50	TATCHED C MULTI -PLC MULTI -PLC MULTI -PLC 	CBOSS COD WINTTI 'PL' MULTI 'PL'	OC SSOU CHOSS OF THE CHOSS OF T	DSITION 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 13 14 15 15 16 16 16 16 16 16 16 16 16 16	1. Т Ш 2. Д В 3. Т Р S S S S S
INDIVIDUAL PINS (P100-)		1,6 3,4	2	2 9		5																					7	8									EXA
JUMPERS	7/8 4/6 5/7						6/8				3			2/3	1				1	+											4	 5		<u> </u>	2	 	٤
J1 POWER SUPPLY J2 RECEIVER J3 TEST SET METER J4 METERING J5 TRANSMITTER				4 30		14 17 27	7 15		11	5 4 13 3 26	3	10 14	6		16									6 3 10 15	19 7	18 1 2 17 12	1		1.2 4.5 3 6								S W J
TB1 NO CONNECTIONS TB2 HIGH CURRENT																																				 	
TB3 EXTERNAL		8 1 6				16 10	14 18	12 2					·		20													3	1 2								

NOTES:

- 1. POSITIONS 6–9 CAN BE USED FOR RETRANSMITTING "PL" SIGNALS. HOWEVER, WHEN CROSS-CODING "PL" SIGNALS, <u>ONLY</u> POSITIONS 8 AND 9 CAN BE USED, AND THEN, WHEN CROSS-CODING INVOLVES "PL" TONES, THE TONE "PRIVATE-LINE" 4–USER MODULE MUST BE IN POSITION 8.
- 2. A MAXIMUM OF EIGHT CODES CAN BE CROSS-CODED USING THE MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER, THE SPECIAL ENCODER (8 REEDS) OR THE STANDARD MULTIPLE TONE "PRIVATE-LINE" ENCODER AND THE MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER. WHEN THE SPECIAL MULTIPLE TONE "PRIVATE-LINE" ENCODER IS USED, JUSIOI AND JUSIO ZMUST BE REMOVED - THEY ARE IN FOR THE STANDARD MODULE. IF MIXED CROSS-CODING IS USED, THE MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER MUST USE ONLY THE LAST 4 CODE PLUG POSITIONS.
- 3. "DIGITAL PRIVATE-LINE" 4- & 2-USER MODULE JUMPER CONFIG-URATIONS JU1-JU2, JU3-JU4,JU5-JU6, AND JU7-JU8 ARE NEVER CONNECTED AT THE SAME TIME. JU1, JU3, JU5 AND JU7 ARE THE NORMAL CONNECTIONS. JU2, JU4, JU6 AND JU8 ARE CONNECTED WHEN THE REPEATER FURNISHES A GROUND INPUT TO PIN 23 FROM ANOTHER MODULE (SUCH AS A SINGLE TONE DECODER).
- JUMPERS JU13, JU14, JU15 AND JU16 ON "DIGITAL PRIVATE-LINE"
 & & 2-USER MODULES ARE CONNECTED WHEN THE RECEIVED CODE DATA IS TO BE RETRANSMITTED. IF NEW CODE DATA IS GENERATED FOR CROSS-CODE TRANSMISSION, THE CORRESPONDING JUMPER IS REMOVED.
- DIODE LOGIC MODULE JUMPER COMBINATIONS JU1-JU2-JU3-JU4, AND JU5-JU6-JU7-JU8 CAN BE USED TO CROSS-CODE BINARY OR TONE "PL". THE CORRESPONDING JUMPERS ARE REMOVED DEPENDING ON THOSE 4-USER MODULES FILLING POSITIONS 8 AND 9.

- 6. TONE "PRIVATE-LINE" 4-USER MODULE JUMPER COMBINATIONS JU1-JU5, JU2-JU6, JU3-JU7 AND JU7-JU8 ARE NEVER CONNECTED AT THE SAME TIME. JU1, JU2, JU3 AND JU4 ARE THE NORMAL CONNECTIONS. JU5, JU6, JU7 AND JU8 ARE CONNECTED WHEN THE REPEATER FURNISHES A GROUND INPUT TO PIN 23 FROM ANOTHER MODULE (SINGLE TONE DECODER).
- CR1, CR2, CR3 AND CR4 IN TONE "PRIVATE-LINE" 4-USER MODULE ARE NORMALLY CONNECTED, WHEN CROSS-CODING IS DESIRED THE CORRESPONDING DIODE IS REMOVED.
- UNIFIED CONTROL CHASSIS CIRCUIT BOARD JUMPERS JU6 AND JU7 USED FOR A NOTCH FILTER SPECIAL APPLICATION. WHEN JU6 AND JU7 ARE USED, JU4, JU5 AND JU8 ARE REMOVED.
- WHEN CROSS-CODING "PL" TONES, REMOVE R821. WHEN CROSS-CODING BINARY "PL" CODES, REMOVE R825 IN MASTER DECODER MODULE.
- DIODE LOGIC MODULE--WHEN CROSS--CODING ONLY BINARY "PL" CODES, USE JU9 AND JU10 - REMOVE JU12. WHEN CROSS--CODING ONLY "PL" TONES, USE JU9 AND JU12 - REMOVE JU10. WHEN USING MIXED CROSS--CODING, USE JU10 AND JU12 - REMOVE JU9.
- 11. MULTIPLE TONE "PRIVATE-LINE" ENCODER IS REFERENCED IN 900 SERIES.

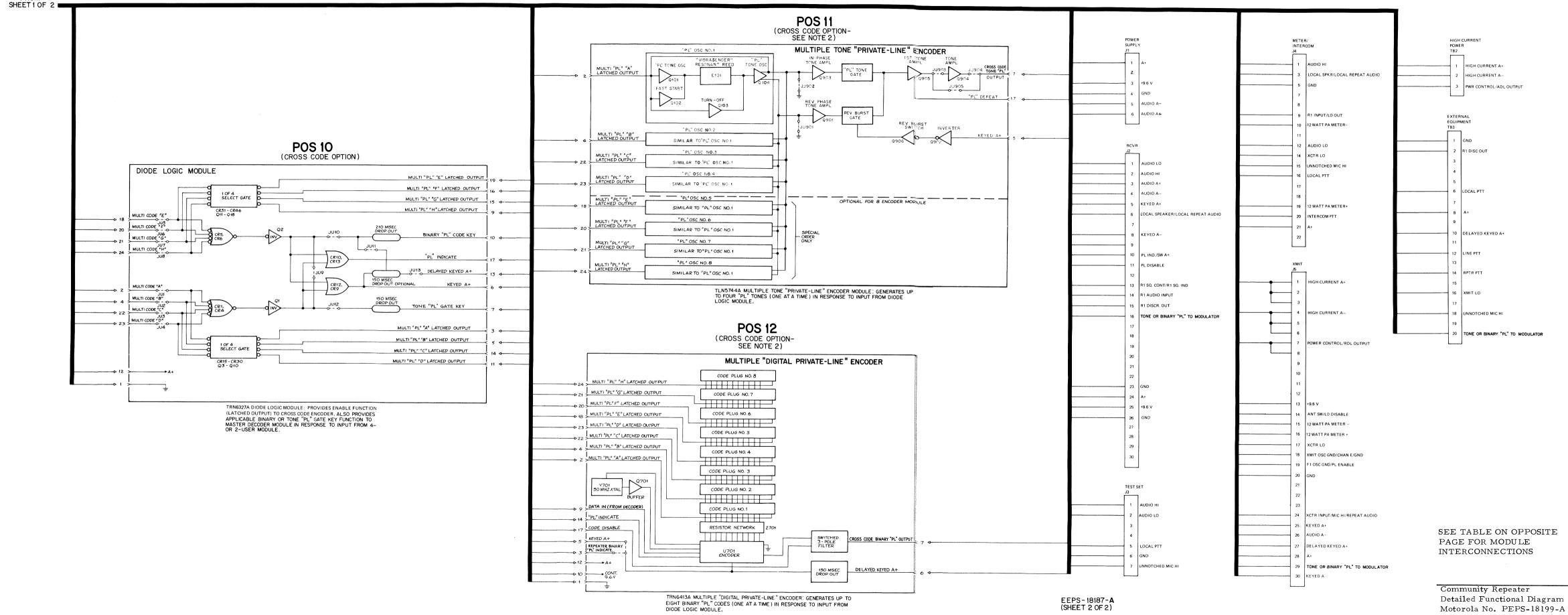
Community Repeater Detailed Functional Diagram Motorola No. PEPS-18199-A (Sheet 3 of 4) 2/23/76-NPC

UNICHASSIS INTERCONNECT TABLE

JUMPER TABLE

	JU1 (OR JU901 – NOTE 11)	JU2 (OR JU902 – NOTE 11)	JU3 (OR JU903 – NOTE 11)	JU4 (OR JU904 – NOTE 11)	JU5 (OR JU905 – NOTE 11)	JU6	jU7	8UL	JU9	JU10	JU11	JU12	JU13	JU14	JU15	JU16	TIMING OPTIONS	OTHER NOTES
UNIFIED CONTROL CHASSIS CIRCUIT BOARD	IN	IN (FOR STD RESET W/O QUIETING)	IN (FOR STD RESET W/O SQUELCH)	IN (FOR NORMAL OPERATION)	IN (FOR NORMAL OPERATION)	NOTE 8	NOTE 8	IN (FOR NORMAL OPERATION)										
TIME-OUT-TIMER																	1/2, 1, 2, 4, 8 (MIN.)	
STA CONTROL MODULE	iN	IN	IN	IN			iN	IN	IN									
SQ. GATE MODULE			IN	IN "PL"	IN	IN	IN	IN	IN	iN	IN	IN	SELECTED DELAY	IN "PL"	IN "PL"		1, 2, 4, 8 (SEC.)	
SINGLETONE DECODER MODULE	IN (FOR 5 SEC. TURN– OFF DELAY)	IN (FOR LOCK MODE)	IN		IN	IN												
MASTER DECODER MODULE	IN (ONLY FOR TOTAL BINARY SYSTEM)	IN (ONLY FOR TOTAL TONE SYSTEM)																NOTE 9
"DIGITAL PRIVATE-LINE" 4- &2-USER CONTROL MODULE	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	NOTE 3	IN	IN	IN	IN	NOTÉ 4	NOTE 4	NOTE 4	NOTE 4		
TONE "PRIVATE-LINE" 4-USER CONTROL MODULE	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6	NOTE 6										NOTE 7
DIODE LOGIC MODULE	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 5	NOTE 10	NOTE 10	IN (ONLY WITH 150 MSEC. DROP- OUT OPTION)	NOTE 10	IN (FOR 150 MSEC. DROP- OUT OPTION)					
MULTIPLE "DIGITAL PRIVATE-LINE" ENCODER MODULE																		
FONE PRIVATE-LINE" MULTIPLE INCODER MODULE	NOTE 2	NOTE 2	IN	iN								L						

HOW TO READ THIS TABLE


HIS TABLE SHOWS ALL INTERCONNECTIONS MADE BY THE PLATING ON BOTH SIDES OF THE TERCONNECT BOARD AND BY WIRE JUMPERS.

L PIN NUMBERS IN EACH VERTICAL COLUMN ARE ELECTRICALLY COMMON (INTERCONNECTED CIRCUIT BOARD PLATING).

D TRACE INTERCONNECTIONS FROM ANY STARTING POINT TO ALL OTHER COMMON POINTS ROCEED AS FOLLOWS:

- FEP 1. FIND THE MODULE POSITION OR CONNECTOR IN THE LEFT OR RIGHT HAND COLUMN OF THE TABLE.
- TEP 2. FIND THE DESIRED PIN NUMBER. ALL PINS OF A SPECIFIC CONNECTOR ARE LISTED IN THE LINE THAT EXTENDS TO THE RIGHT.
- EP 3. NOTE THE FUNCTION OF THE DESIRED PIN. THE FUNCTION IS LISTED AT THE TOP OF THE COLUMN IN WHICH THE PIN NUMBER APPEARS. ALL OTHER PINS LISTED IN THE SAME FUNCTION COLUMN ARE INTERCONNECTED. FOR EACH ENTRY IN THE FUNCTION COLUMN, TRACE BACK TO THE LEFT HAND COLUMN TO FIND THE MODULE OR CONNECTOR NUMBER. (SEE EXAMPLE.)
- EP 4. * EQUALS FUNCTION SOURCE.

TATION CONTROL MODULE (MODULE POSITION 2) PIN 5 HAS THE FUNCTION LOCAL P-T-T HICH IS INTERCONNECTED TO T-O-T (PIN 5), SQUELCH GATE (PIN 13), J3 (PIN 5), . (PIN 16), AND TB3 (PIN 6).

FROM

(Sheet 4 of 4) 2/23/76-NPC

5

UNIFIED CONTROL CHASSIS

MODEL TCN1121A

1. DESCRIPTION

1.1 The unified control chassis permits the station to operate as an automatic unattended community repeater and performs the fol-

lowing functions:

- --Detects the presence of an rf input signal.
- --Detects the presence of proper PL codes (up to 4 different codes).
- --Keys the transmitter when an input of a predetermined quieting level (or greater) and a proper PL code is present.
- Applies received audio to the transmitter at the proper level for retransmission.
- --Retransmits the PL code.
- --Limits the maximum time the repeater can be operated continuously by one user.

1.2 The control unit features all solid-state circuitry and modular construction. The basic assembly consists of a control unit chassis and five plug-in modules. A basic community repeater includes one 4-user control module, which permits the use of up to four PL tones or binary codes. If more capacity is required, more 4-user **c**ontrol modules may be added by merely plugging them into the control chassis. A total of four of these modules can be used, for a maximum station capability of 16. A space is also provided for adding an optional single tone decoder module. If this accessory is used, a specific audio tone frequency is required at the beginning of each initial incoming message, in addition to the \mathbf{PL} code to operate the repeater.

2. MAINTENANCE

2.1 REMOVAL AND REPLACEMENT OF MODULES

2.1.1 Modules may be removed by simply pull-

ing outward on the module, and may be replaced by pushing the module into its position in the panel. The module is labelled and the mounting positions are marked on the chassis.

CAUTION

- 1. Never attempt to plug a module into the pins on the back of the Control Unit.
- 2. Always be sure of the correct module position before plugging in a module.
- 3. Turn off power to the station before removing or inserting modules to prevent transistor damage from transients.

2.1.2 The Motorola Model TLN8799A Service Board Kit is available for extending the module to provide access to the circuitry while providing all power and signal connections.

2.1.3 Technicians who service many of these stations may wish to carry spare modules and replace malfunctioning modules for immediate restoration of operation. The module may then be repaired at the shop and used as the next replacement spare.

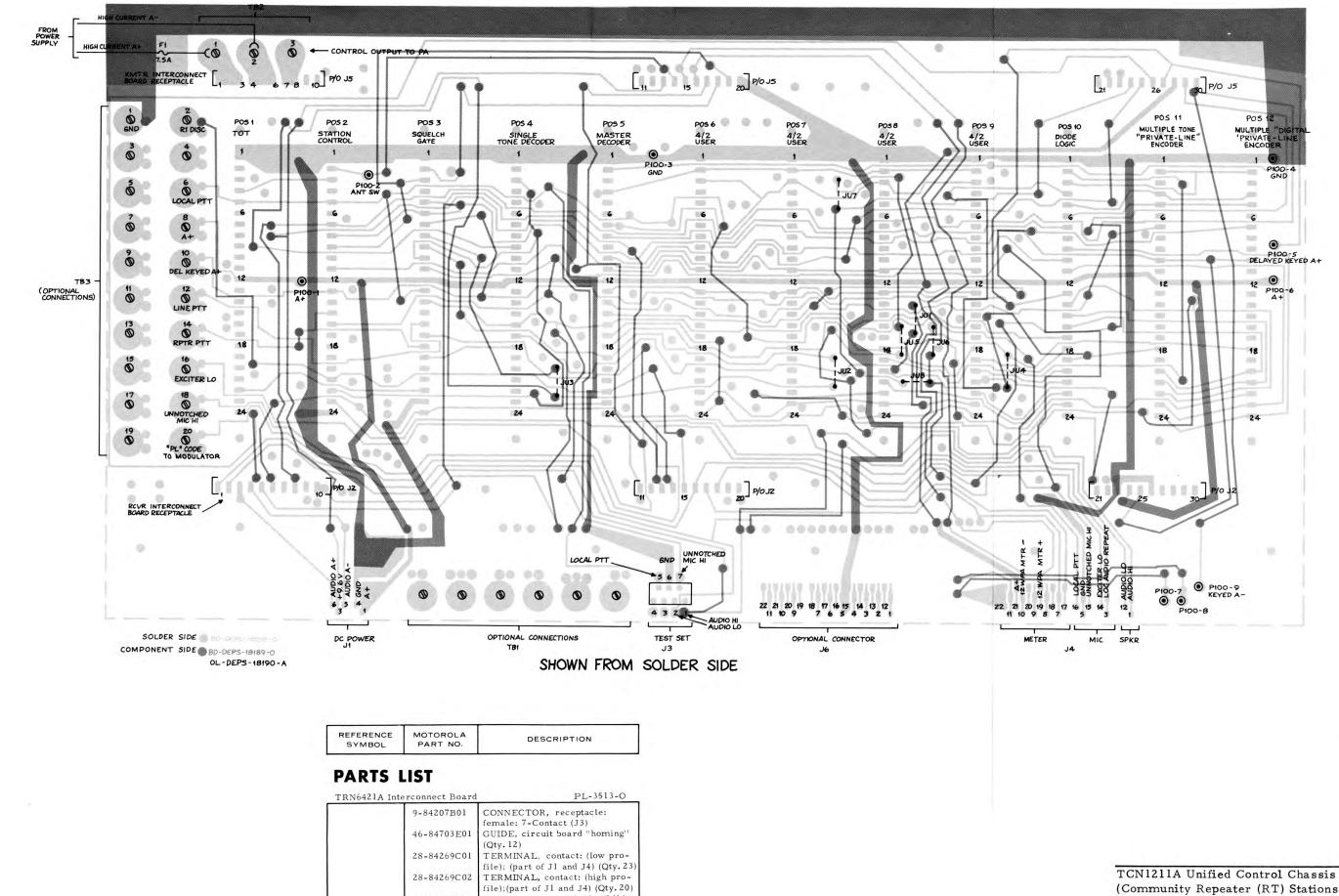
NOTE

All jumper connections must be identical on modules that are removed and modules that are inserted before swapping can be successfully used as a troubleshooting technique.

service publications

1301 E. Algonquin Road, Schaumburg, IL 60172

2.2 ADJUSTMENTS


All adjustment procedures are provided in the INSTALLATION AND OPERATION section of this manual.

2.3 TROUB LESHOOTING

The first step that should be performed when looking for trouble in the unified control chassis is to check all modes of operation. This helps localize the source of trouble because some of the circuitry is common to all types of operation; while some of it is used only for one type of operation. The next step should be to connect a portable test set to the various transmitter and receiver metering receptacles and check the meter readings. A list of typical readings for a normally operating unit is given in manual 68P81025E50. The meter readings will isolate the trouble to a few stages. Voltage or signal measurements may then be taken in these suspected stages to isolate the defect to a specific component. Typical dc voltages are shown on the schematic diagrams.

NOTE

Some of the circuits may operate properly although the test set or voltage readings may vary considerably from the typical values given. Proper operation of the logic circuits can usually be presumed if there is a distinct difference in the reading between the active and inactive states.

3-00001976

29-83362G01

29-84028H09

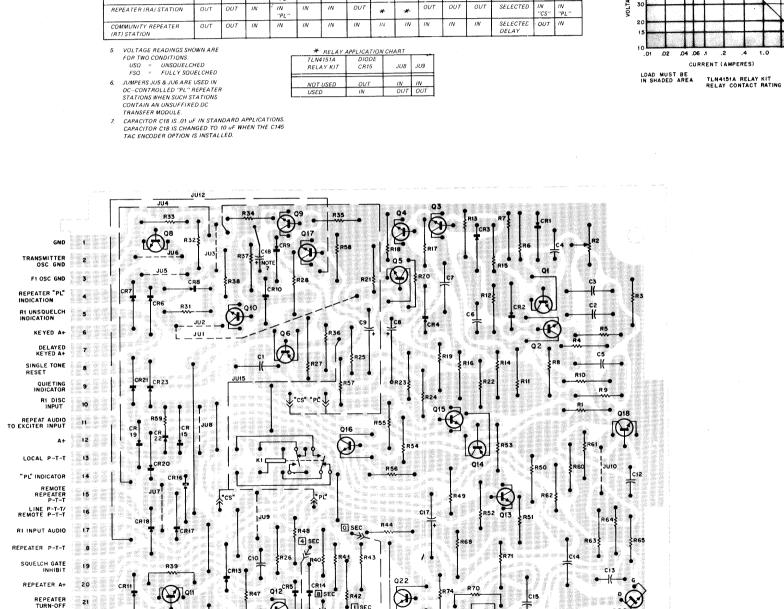
SCREW, machine: 6-32 x 5/16"

slotted binder head (Qty. 29)

TERMINAL, contact: male

TERMINAL, contact: male

"stake pin") (Qty. 348)


(Qty. 29)

4

(Page 4 is blank)

TCN1211A Unified Control Chassis (Community Repeater (RT) Stations) Circuit Board Detail Motorola No. PEPS-18191-A 2/23/76-NPC

3

				¢	JU	MPER TA	BLE								
APPLICATION	JU1	JU2	JU3	JU4	JU5	JU6	JU7	JU8	JU9	JU10	JUH	JU12	JU13	JU14	JU15
LINE CONTROL BASE	ουτ	ουτ	IN	оит	Ουτ	OUT	IN	IN	IN	out	OUT	OUT	SELECTED DELAY	IN	ουτ
REPEATER (RT) STATION WITHOUT WIRE LINE CONTROL	Ουτ	OUT	IN	IN "РL"	IN	IN	IN	IN	IN I	IN	IN	IN	SELECTED DELAY	IN "CS"	ΙΝ "ΡL"
REPEATER (BT) STATION WITH WIRE LINE CONTROL	OUT	OUT	IN	ΙΝ "PL"	NOTE 6	NOTE 6	/N	IN	IN	IN	ουτ	IN	SELECTED DELAY	IN "CS"	IN "PL"
BASE (RA) STATION	IN	OUT	IN .	IN "PL"	IN	IN	IN	*	*	OUT	ουτ	Ουτ	SELECTED DELAY	IN "CS"	IN ''PL''
REPEATER (RA) STATION	OUT	Ουτ	IN	: IN "PL"	IN	IN	ουτ	*	*	ουτ	ουτ	ουτ	SELECTED	IN "CS"	IN "PL"
COMMUNITY REPEATER (RT) STATION	Ουτ	ουτ	IN	IN	IN	IN	IN	114	IN	IN	1N	IN	SELECTEE DELAY	Ουτ	IN

2. RELAY KIT IS AN OPTIONAL ACCESSORY ITEM. REFER TO RELAY APPLICATION CHART FOR

1. UNLESS OTHERWISE STATED: RESISTOR VALUES ARE IN OHMS (K = 1000) CAPACITOR VALUES ARE IN MICROFARADS CR15, JU8 AND JU9 USAGE WITH RELAY.

3. USE OF THIS RESISTOR AND CAPACITOR IS DETERMINED AT FACTORY.

4. REFER TO JUMPER TABLE

NOTES:

T-O-T 22 RESET

LINE DRIVER 23 GND

REPEAT AUDIO 24

P

OL-DEPS-8240-A

30

SQUELCH GATE MODULE SOUELCH GATE MODULE WILL REMAIN ENABLED WHEN A "PL" CODE IS PRESENT, AND JUI5 IS INSERTED, EVEN DURING FADING RF SIGNAL CONDITIONS, WHEN "PL" CODE IS LOST, HOWEVER' THE MODULE IS INHIBITED AND XMTR TURN-OFF WILL OCCUR.

START NO INCOMING RCVR SIGNAL = HIGH NOISE PRESENCE OF RCVD SIGNAL = LOW NOISE

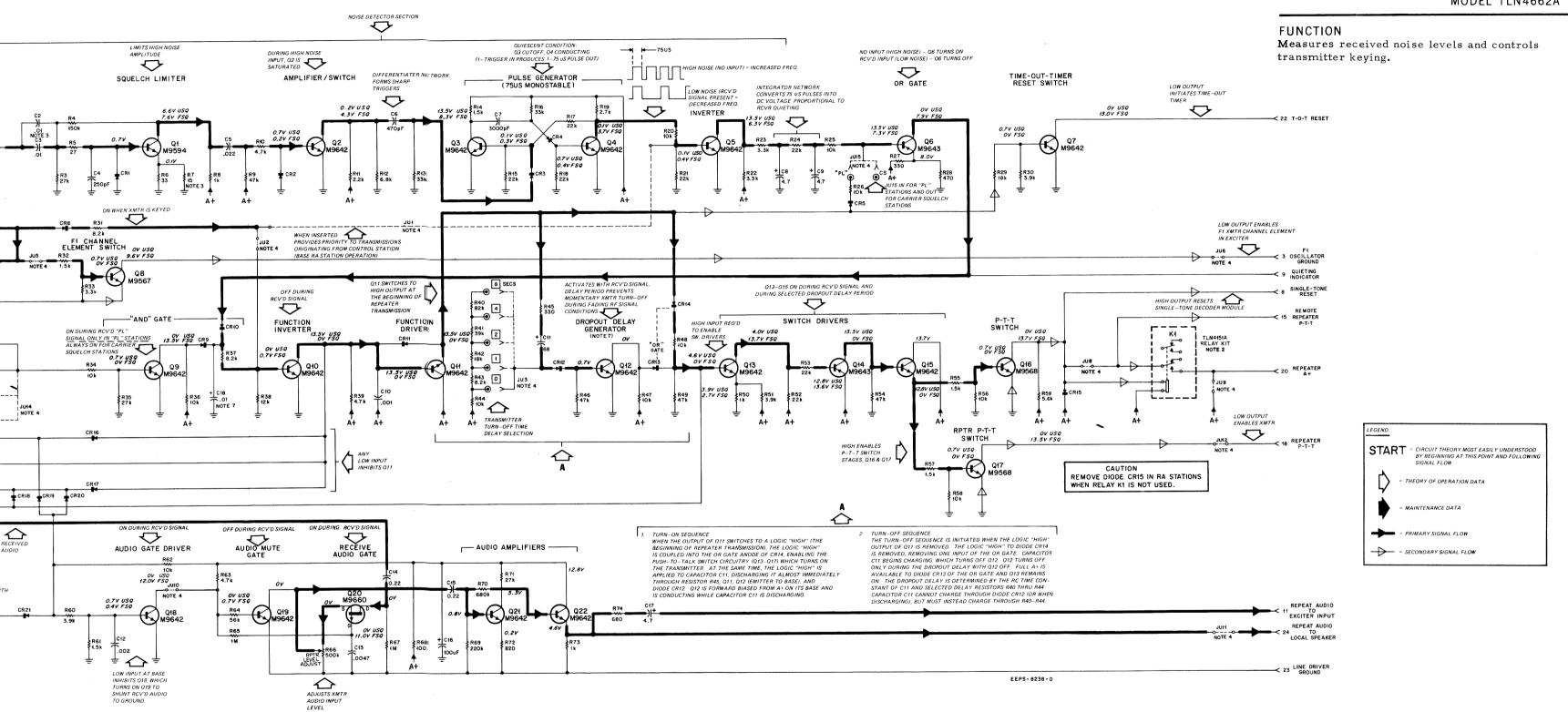
DISCR

ADJUST INPUT

THRESHOLD LEVEL TO PERMIT XMTR KEY WITH APPRO; 10–25 dB RCVR

QUIETING (NOM.≈ 20dB)

PRESENT DURING P-T-1


AND FOR 150 mS AFTER

0.22

- DELAYED KEYED 7 KEYED A+ 6 >---- \bigtriangleup PRESENT DURING P--T--T REPEATER "PL" 4 >-----INDICATOR 14 >-A+**4**-€ ≻ ⊙ ≻----
- LOCAL/LINE P-T-T INPUTS HAVE PRIORITY OVER LOCAL P-T-T 13 >----REPEATER OPERATION REPEATE
- FUNCTIONAL WITH FUNCTIONAL WITH SINGLE-TONE DECODER ENCODER APPLICATIONS LOW INPUT PRESENT WITH ABSENCE OF SINGLE-TONE INHIBITS SQUELCH GATE MODULE HIGH IS PRESENT WITH SINGLE-TONE INPUT, WHICH ENABLES THE WHICH ENABLES THE LINE P-T-T/ 16 >---NOTE 4 SQUELCH GATE A+ 12 >-----SOUELCH GATE MODUL TO KEY THE XMTR. GROUND 1 >-----
 - HIGH INPUT WITH RCVD SIGNAL UNSQUELCH INDICATION 5

SHOWN FROM SOLDER SIDE

CR12

SQUELCH GATE MODULE

MODEL TLN4662A

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION
PARTS LI		

TLN466	-	DI lch Gate Module	PL-1697-E
	EA Dque		
			CAPACITOR, fixed: pF: ±10%; 50 V; unl. stated
Cl		8-82905G11	0.22 uF
C2,3		8-82905G01	.01 uF
C4		21-859943	250 ±5%; 500 V
C5 C6		8-82905G02 21-850510	.022 uF 470; 300 V
C7		21-850994	3000 ±5%; 500 V
C8, 9		23-82783B25	4.7 uF; 25 V
C10		21-82187B29	.001 uF; 100 V
C11		23-865594	68 uF; 15 V
C12 C13		21-82428B25 21-83596E23	.002 uF ±20%; 500 V .0047 uF; 200 V
C14, 1	5	8-82905G11	0.22 uF
C16		23-82783B04	100 uF ±20%; 25 V
C17		23-82783B25	4.7 uF; 25 V
C18		21-82428B62	.01 uF SEMICONDUCTOR DEVICE,
			diode: (SEE NOTE)
CR1, 2		48-82392B03	silicon
CR3	0	48-83654H01	silicon
CR4 th		48-82392B03	silicon
CR9,1 CR11 t		48-83654H01 48-82392B03	silicon silicon
CR22,		48-83654H01	silicon
		Į	
			TRANSFEROR. (CDD. NO. TD)
Q1		48-869594	$\frac{\text{TRANSISTOR:}}{\text{N-P-N; type M9594}}$
Q2 thru	ι 5	48-869642	N-P-N; type M9642
Q6		48-869643	P-N-P; type M9643
Q7		48-869642	N-P-N; type M9642
Q8 Q9 thru	13	48-869567 48-869642	N-P-N; type M9567 N-P-N; type M9642
Q14	. 15	48-869643	P-N-P; type M9643
Q15		48-869642	N-P-N; type M9642
Q16, 1'		48-869568	N-P-N; type M9568
Q18, 19	9	48-869642	N-P-N; type M9642
Q20 Q21, 22	2	48-869660 48-869642	field-effect; type M9660 N-P-N; type M9642
S20 1, 01	-	40-00 /042	N-P-IN, type M3042
			RESISTOR, fixed: ±10%; 1/4 W;
			unl. stated
R1 R2		6-129231	3.3k
R3		18-83083G03 6-127806	variable: 25k ±30% 27k
R4		6-129146	150k
R5		6-131594	27
R6		6-124A13	33 ±5%
R7 R8		6-124A05	15 ±5% 1k ±5%
R9		6-129805 6-128902	47k
R10		6-127804	4.7k
R11		6-128689	2.2k
R12 R13		6-128687 6-127807	6.8k 33k
R14		6-127803	1.5k
R15		6-128685	22k
R16		6-129526	33k ±5%
R17, 18	3	6-128685	22k
R19 R20		6 - 128688 6 - 129225	2.7k 10k
R21		6-128685	22k
R22, 23	;	6 - 129231	3.3k
R24		6-128685	22k
R25, 26 R27	,	6-129225 6-129775	10k
R2 7 R28		6-129775 6-129709	330 470 ±5%
R29		6-128904	18k
R30		6 - 129232	3. 9k
R31		6-128686	8.2k
R32 R33		6-127803 6-129231	l. 5k 3. 3k
R34		6-129231	3. 3k 10k
R35		6-127806	27k
R36		6-129225	l0k
R37 R38		6-128686	8.2k
R38 R39		6-129230 6-127804	12k 4.7k
R40		6-129145	4.7K 82k
R41		6-128903	39k
R42		6-128904	18k
R43		6-128686	8.2k
R44		6-129225 6-129775	10k 330
		0-1491/5	330
R45	1	6-128902	4.7k
		6-128902 6-129225	47k 10k

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION
	· · · · · · · · · · · · · · · · · · ·	
R50	6 - 127802	lk
R51	6-129232	3.9k
R52, 53	6-128685	22k
R54	6-128902	47k
R55	6-127803	1.5k
R56	6-129225	10k
R57	6-127803	1.5k
R58	6-129225	10k
R59	6-129433	5.6k
R60	6 - 129232	3.9k
R61	6-127803	1.5k
R62	6-129225	10k
R63	6-127804	4.7k
R64	6-129242	56k
R65	6-129013	l m
R66	18-83083G02	variable; 500k ±30%
R67	6-129013	l m
R68	6-129753	100
R69	6-129147	220k
R70	6-129010	680k
R71	6-127806	27k
R72	6 - 12 94 32	820
R73	6-127802	lk
R74	6-128599	680

TLN4151A	Relay Kit	PL-455-0
K1	80C84201A01	RELAY, armature: 2 form "C", coil res. 200 ohms
NOTE:	· · ·	•

Replacement diodes and transistors must be ordered by Motorola part number only for optimum performance.

TLN8772A Squelch Gate Panel

TLN8772A Sque	lch Gate Panel	PL-454-0
	64B83926G01 45B83914G01	PANEL, squelch gate GUIDE, printed circuit board: 2 reg'd
	43B82721C01 46B83284H01	INSULATOR, bushing: 2 req'd PLUG, keying

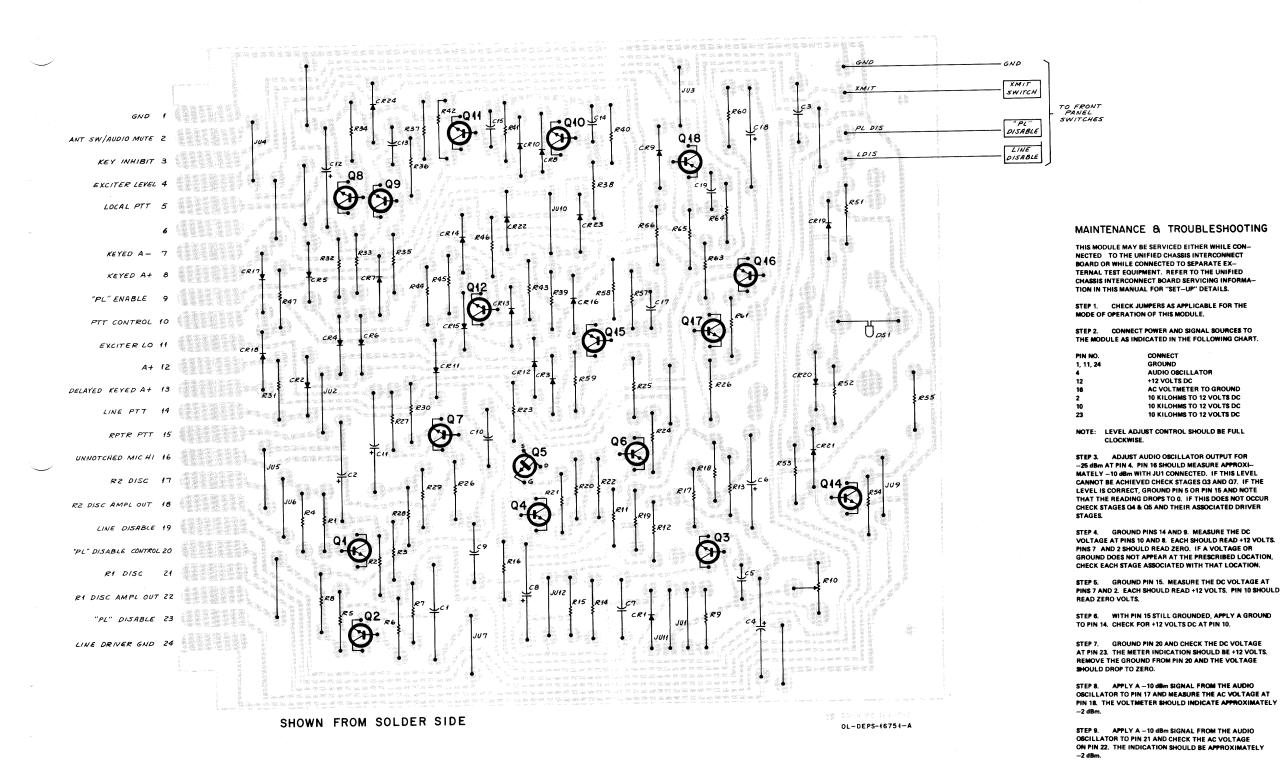
NOTE:

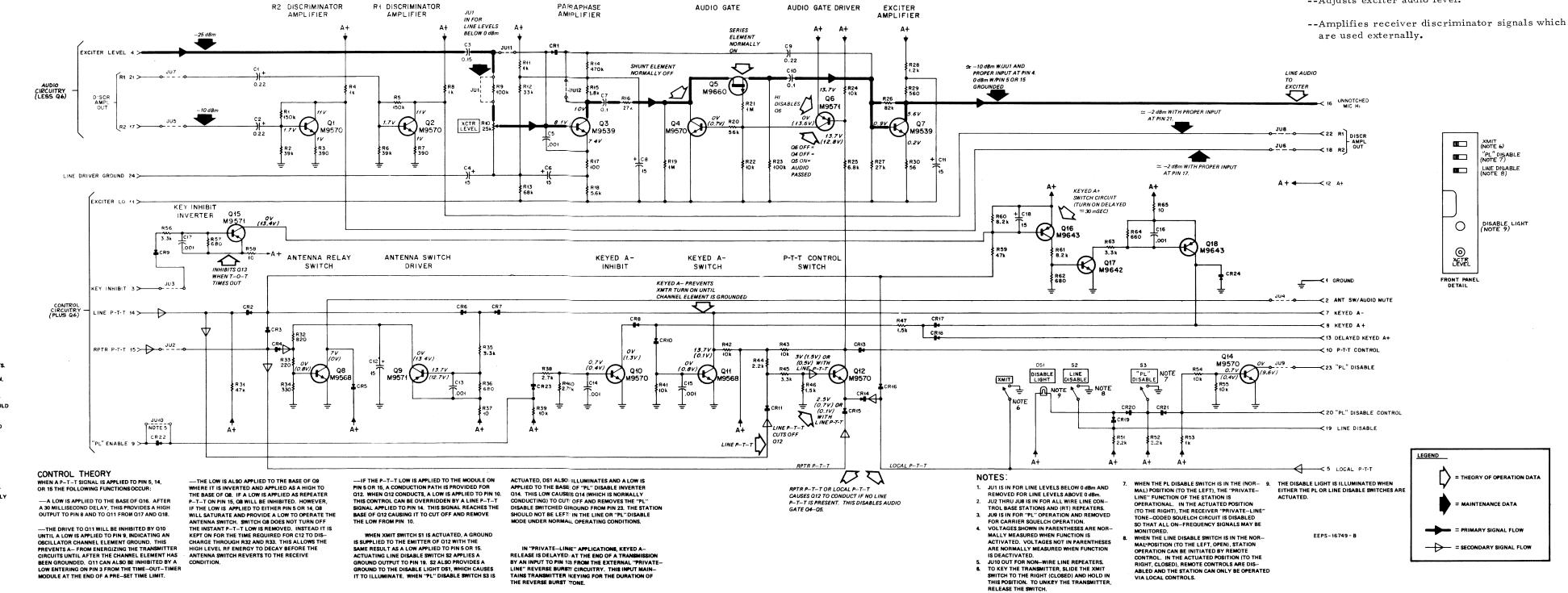
Replacement diodes and transistors must be ordered by Motorola part number only for optimum performance.

		REVISIONS 68P81015E33-G		
CHASSIS AND SUFFIX NO.	REF. SYMBOL	CHANGE	LOCATION	
TLN4662A-1	CR22, 23	ADDED 48-83654H01	P-T-T SWITCH CIRCUIT	
TLN4662A-2	CR9, 10	CHANGED FROM PART NO. 48-82392B03 TO 48-83654H01	GATE CIR- CUIT Q9	
	C18	ADDED]	

STATION CONTROL MODULE

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION
PARTS L	IST	
TLN4635B Stati	on Control Modu	le PL-3235-O
C1, 2 C3 C4 C5 C6 C7 C8 C9 C10 C11, 12 C13, 14, 15, 17 C16	23-865136 8-82905C05 23-865136 21-82187B20 23-865136 8-82905C07 23-865136 8-82905C07 23-865136 21-82187B20	CAPACITOR, fixed; uF ±10%; 50 V; unl. stated 15 ±20%; 25 V 0.15 15 ±20%; 25 V .001; 100 V 15 ±20%; 25 V 0.10 15 ±20%; 25 V 0.22 0.10 15 .001; 100 V NOT USED
CR1, 2, 3, 4 CR5 CR6 thru 24	48-82392B03 48-82466H13 48-82392B03	SEMICONDUCTOR DEVICE, diode: (SEE NOTE) silicon silicon silicon
DS 1	.65-83554G01	LAMP, incandescent: 12 volts; 0.19 amp.
Q1, 2 Q3 Q4 Q5 Q6 Q7 Q8 Q9, Q16 Q10 Q11 Q12 Q13 Q14, Q17 Q15, Q18	48-869642 48-869539 48-869642 48-869643 48-869539 48-869539 48-869568 48-869642 48-869642 48-869642 48-869642 48-869642 48-869643	TRANSISTOR: (SEE NOTE) NPN: type M9642 NPN; type M9642 field-effect: type M9660 PNP; type M9643 NPN: type M9539 NPN; type M9643 NPN; type M9643 NPN; type M9643 NPN; type M9643 NPN; type M9642 NPN; type M9643
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R14 R15 R16 R17 R18 R17 R18 R17 R18 R17 R20 R21 R22 R23 R24 R25 R26 R27 R28 R24 R25 R26 R27 R28 R29 R24 R33 R34 R35, R63 R38 R39 R38 R39 R38 R39 R30 R37 R65 R38 R39 R40	6-129146 6-128903 6-129863 6-129146 6-12802 6-129146 6-12926 6-12926 6-129226 6-129226 6-127802 6-127802 6-127802 6-129144 6-129148 6-129148 6-129148 6-129148 6-129242 6-129013 6-129225 6-129225 6-129225 6-129225 6-129225 6-129225 6-12925 6-129432 6-129432 6-1294588 6-129455 6-12945888 6-129455 6-1284588	RESISTOR, fixed: ±10%; 1/4 W unl. stated 150k 39k 390 1k 150k 39k 390 1k 100k var: 25k 1k 33k 68k 470k 1.8k 27k 100 5.6k 1 meg 56k 1 meg 10k 100k 5.6k 1 meg 10k 100k 5.6k 1 meg 10k 100k 5.6k 1 meg 10k 100k 5.6k 1 meg 10k 100k 10k 5.6k 1 meg 10k 100k 10k 5.6k 1 meg 10k 100k 10k 5.6k 1 meg 10k 100k 100k 100k 100k 100k 100k 100k

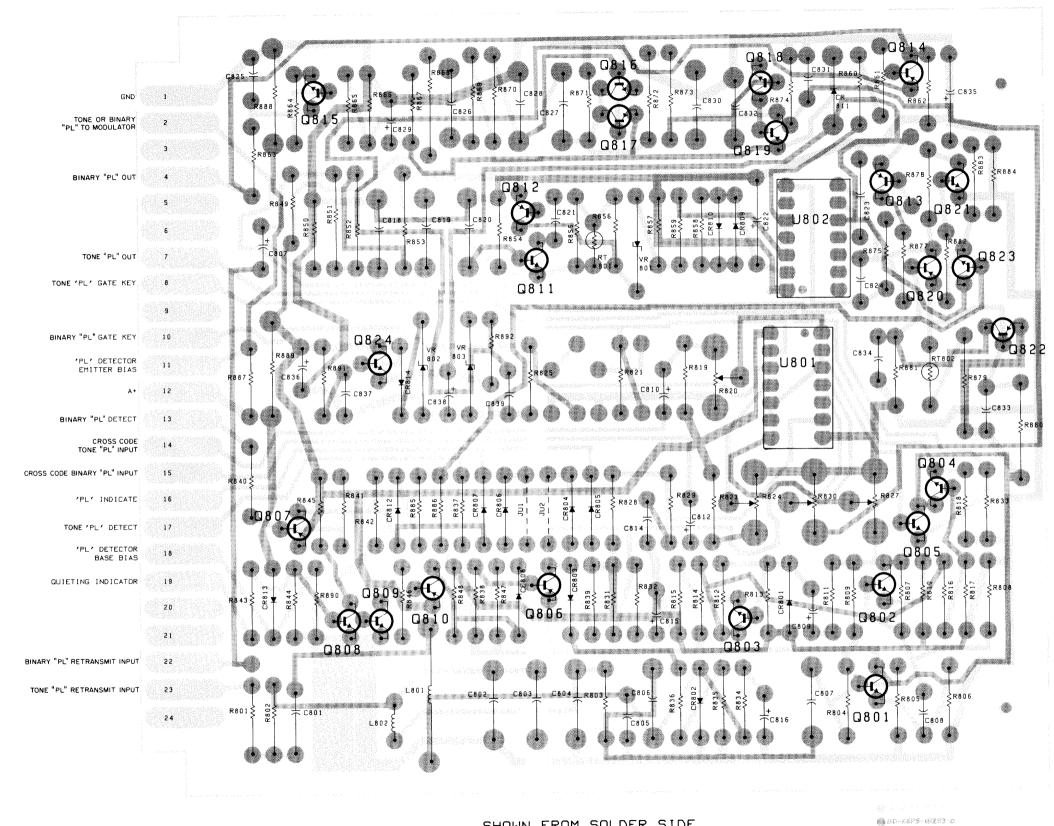

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION	
.	•		
R41	6-129225	10k	
R42	6-129225	10k	
R43	6-129225	10k	
R44	6-128689	2.2k	
R45	6-129231	3. 3k	
R.46	6-127803	1.5k	
R47	6-127803	1.5k	
R48, R49, R50		NOT USED	
R51,52	6-128689	2.2k	
R53	6-127802	1k	
R54,55	6-129225	10k	
R56	6-129231	3.3k	
R57	6-128599	680	
R58	6-129755	10	
R59	6-124A89	47k; ±5%	
R60	6-124A71	8.2k; ±5%	
R61	6-124C71	8.2k	
		SWITCH:	
S1	40-83468E01	slide; xmtr.	
S2, 3	40-83204B01	slide; "PL" & line disable	
		LAMPHOLDER:	
XDS1	9-84285C01	female; single contact	
NON-REFERENCED ITEMS			
	61-855798 43-82721C01	JEWEL, lamp BUSHING, insulator	
	43-865080 9-83011H01	BUSHING, threaded; 2 req'd female, receptacle; 24 req'd	


NOTE:

Replacement diodes and transistors must be ordered by Motorola part number only for optimum performance.

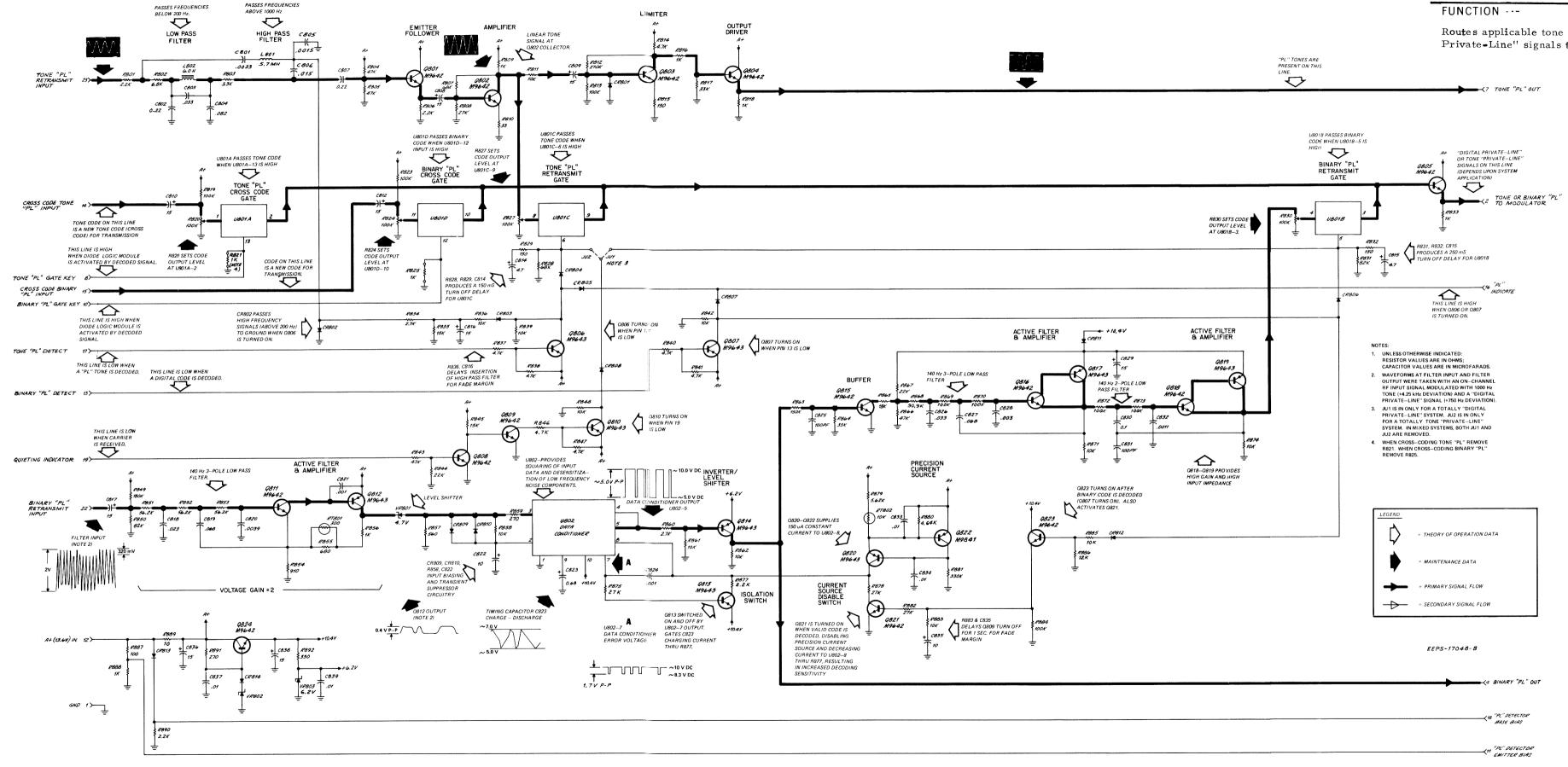
		REVISIONS 68	P81015E31-F
CHASSIS AND SUFFIX NO.	REF. SYMBOL	CHANGE	LOCATION
TLN4635A	R38	WAS 6-129232 3.9k	Q10 BASE
_	R39	WAS 6-128904 18k	Q10 BASE
	R35	6-127805 15k	Q9 BASE
	R36	WAS 6-128902 47k	Q9 BASE
	R48	WAS 6-129687 6.8k	Q13 BASE
	R49	WAS 6-129225 10k	Q13 BASE
TLN4635A-1			
TLN4635A-2	R 38	FROM 6-127806, 27k	Q10 BASE
		TO 6-128688, 2.7k	CIRCUIT
	R39	FROM 6-128688, 2.7k	
		TO 6-129225, 10k	
	R40	FROM 6-128902, 47k	
		TO 6-128688, 2.7k	
	CR23	ADDED 48-82392B03	
	C17	ADDED 21-82187B20,	KEY INHIB-
		.001 uF	IT INVERTER
	CR22	ADDED 48-82392B03	
	Q15	ADDED 48-869571,	
		M9571	
	R56	ADDED 6-129231, 3. 3k	
	R57	ADDED 6-128599, 680	
	R58	ADDED 6-129755, 10	
	C1, 2	FROM 8-82905G11,	DISCRIMINA-
		0.22 uF	TOR AMP-
		TO 23-865136, 15 uF	LIFIER CIR-
	4		CUIT
	C1, 2	FROM 23-865136,	
		15 uF	
		TO 8-82905G11,	
	1	0.22 uF	

68P81015E31-F (Sheet 1 of 2) 9/9/75-NPC


STATION CONTROL MODULE

MODEL TLN4635B

FUNCTION


- --Integrates control functions from other modules to key the station transmitter.
- --Adjusts exciter audio level.

68P81015E31-F (Sheet 2 of 2) 9/9/75-NPC

SHOWN FROM SOLDER SIDE

OL-EEPS-17058-A

MASTER DECODER MODULE

MODEL TRN6165A

Routes applicable tone "Private-Line" or "Digital Private-Line" signals to transmitter.

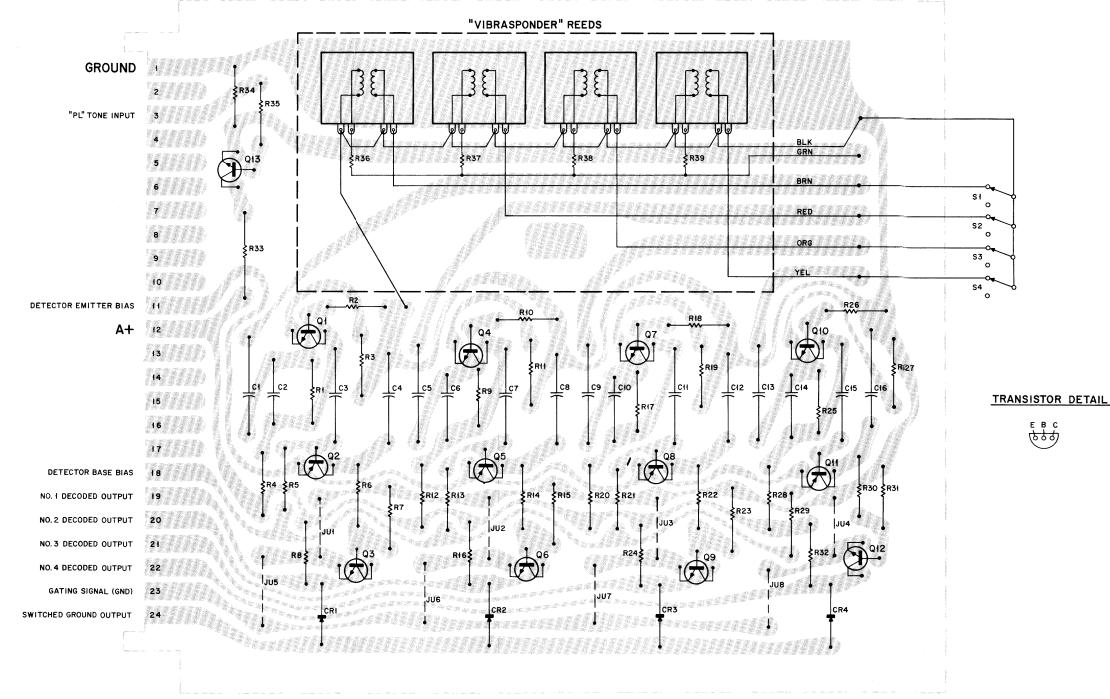
68P81026E88-A 2/23/76-NPC

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION	

PARTS LIST

TRN6165A Master Dec	coder Module	PL-3419-A
	CAPACITO	DR, fixed:
1 1	187B25 .0033 uF ±	10%; 500 V
	05G11 0.22 uF ±1	
	05G08 .033 uF ±1 05G45 .082 uF ±1	
		0%; 50 V 10%; 100 V
	05G10 .015 uF ±1	
	538G04 15 uF ±20%	
812, 816, 817,		<i>,</i> - · · ·
829, 836, 838		
	538G02 4.7 uF ±20	
	05G39 .023 uF ±5	
1	13H23 .068 uF ±5	
	13H19 $.0039 \text{ uF} \pm 187B20$ $.001 \text{ uF} \pm 100$	
	187B20 .001 uF±10 762H03 10 uF ±10%	
	762H03 10 uF ±10% 783B48 0.68 uF ±5	
C828 21-85		
	$0.1 \text{ uF} \pm 5\%$	
C831, 825 21-83	798B01 100 pF ±5%	
C832 21-830	003G01 .0011 uF ±	5%; 100 V
C833, 834, 837, 21-824		-20%; 200 V
839		
C826 8-838	13H34 .033 uF ±50	%; 100 V
	DIODE: (SE	
CR801 thru 808, 48-836 812, 813, 814	654H01 planar; sili	con
	616A01 hot-carrier	
	466H13 rectifier; s	
		11.001
	COIL, RF:	
L801 24-864	1763 choke; 5.7	mH
L802 24-840	003A01 choke; 6 H	
	TD ANGISTO	
Q801 thru 805, 48-869		<u>DR:</u> (SEE NOTE) M9642
808, 809, 811,	0642 NPN; type.	M9642
815, 816, 818,		
821, 823, 824		
Q806, 810, 812, 48-869	9643 PNP; type 1	49643
813, 814, 817,		VI / 0-1 3
819, 820, 807		
Q822 48-869	9841 PNP; type M	v19841
		/
		fixed: ±10%; 1/4 W;
R801, 806, 890 6-124C		rwise stated
R801, 806, 890 6-124C		
R802 6-124C		
R804, 805, 843 6-124C		
R807,828 6-124C		
R808, 878, 882, 6-124C		
875		
R809, 818, 833, 6-124C	1k 1k	
821, 825 R810 6-124C		
R810 6-124C R811, 836, 839, 6-124A		
842, 848, 858,	.73 10k	
861, 862, 883		
R812 6-124B	08 270k ±5%	
R813 6-124A		
R814 6-124A	65 4.7k ±5%	
R815 6-124A	29 150 ±5%	
R816,856 6-124A	.49 1k ±5%	
R817 6-124A		
R819, 823, 884 6-124C		
R820, 824, 827, 18-830 830	83G01 variable; 10	0k
830 R829, 832 6-124C	29 150	
R831 6-124C		
R834, 860 6-124C		
R835, 845 6-124C		
R837, 838, 840, 6-124C		
841, 846, 847		
R844 6-124C		
R849 6-124B		
R850 6-124A R851, 852, 853 6-1375		
R851,852,853 6-13755 R854 6-124A		
R854 6-124A R855 6-124A		
R855 6-124A		
	T.J	
R859,891 6-124C		

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION
		r
R863	6-124D02	150k
R864	6-124C85	33k
R865	6-124A79	18k ±5%
R866	6-124A89	47k ±5%
R867	6-124A81	22k ±5%
R868	6-13755D84	90.9k $\pm 1\%$
R869,870,872,873	6-13755D88	$100k \pm 1\%$
R871, 874, 885	6 - 124A73	10k ±5%
R877	6 -124A 57	2.2k ±5%
R879	6-13755C67	5.62k $\pm 1\%$
R880	6-13755C59	4.64k $\pm 1\%$
R881	6-124B10	330k ±5%
R886	6-124A75	12k ±5%
R887	6-124A25	100 ±5%
R888	6-125A49	$1k \pm 5\%; 1/2 W$
R889	6-125C01	10; 1/2 W
R892	6-124C37	330
		THERMISTOR
RT801	6-865641	300
RT802	6-82696B01	10k
		INTEGRATED CIRCUIT:
		(SEE NOTE)
U801	51-82822F12	type 4016AE
U802	51-84320A55	type LM565
		VOLTAGE REGULATOR
VR801	48-82256C03	Zener type; 4.7 V
VR802	48-82256C34	Zener type; 11 V
VR803	48-83696E07	Zener type; 6.2 V
NON-REFERENCED ITEM		
	45-83914G01	GUIDE, card: 2 req'd.


NOTE:

Replacement diodes, transistors, and integrated circuits must be ordered by Motorola part number for optimum performance.

	REFERENCE	MOTOROLA	DESCRIPTION
I	SYMBOL	PART NO.	

PARTS LIST

TLN5804A Fo	our-Tone Deco	der Board PL-2750-O
C1, 3, 5, 7, 9, 11, 13, 15	23K8651 37	$\frac{CAPACITOR, fixed}{4.7 \text{ uF } \pm 20\%; 25 \text{ v}}$
C2, 6, 10, 14 C4, 8, 12, 16	8D82905G07 23D82783B08	.002 uF ±10%; 50 v 1.0 uF ±20%; 35 v
CR1, 2, 3, 4	48C82392B0 3	<u>SEMICONDUCTOR DEVICE</u> , <u>diode:</u> (SEE NOTE) silicon (SG3182)
Q1, 3, 4, 6, 7, 9, 10, 12, 13	48R869570	<u>TRANSISTOR:</u> (SEE NOTE) N-P-N; type M9570
Q2, 5, 8, 11	48R869571	P-N-P; type M9571
		RESISTOR, fixed: ±10%; 1/4 w; unl. stated
R1, 9, 17, 25	65129144	68K
R2, 5, 10, 13,	6S127806	2.7K
18, 21, 26, 29		
R3, 11, 19, 27	6S124A13	33 ±5%
R4, 12, 20, 28	65129805	1K ±5%
R6, 7, 8, 14,	65129225	10K
15, 16, 22, 23,		
24, 30, 31, 32		
R33	6S10053A26	33 ±5%; 1/2 W
R34	65127802	1K
R35	6S129753	100
R36 thru 39	6S129982	5.6K ±5%
	NON-REFEREN	ICED ITEMS
	9C83035A02	SOCKET, "Vibrasponder"; 4 used
	9B83011H01	CONNECTOR, receptacle: female; 12 used

TLN8782A Four-Tone Decoder Panel

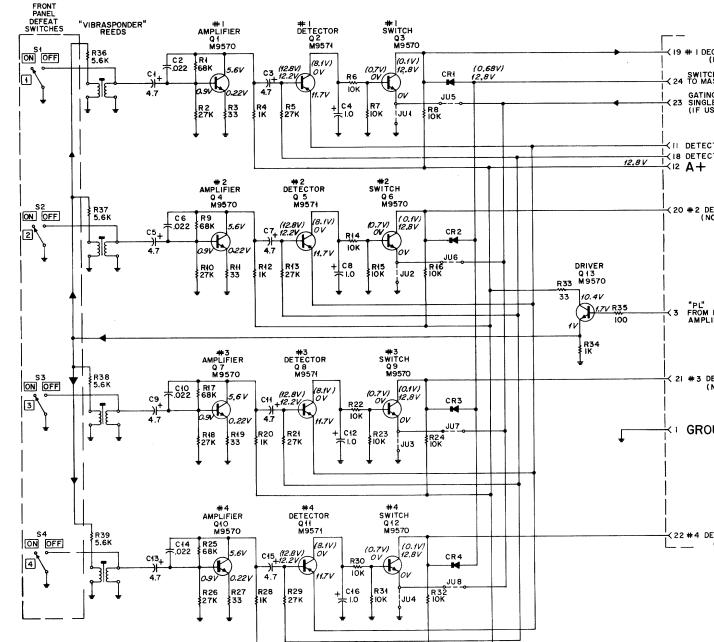
PL-292-0

		SWITCH, slide:
S1, 2, 3, 4	40B83204B01	dpdt

NOTE:

Replacement diodes and transistors must be ordered by Motorola part number only for optimum performance.

SHOWN FROM SOLDER SIDE


OL- DEPS-14246 - A

NOTES

- JUMPERS JU5 THROUGH JU8 ALLOW CAND" GATING OF "PL" DECODER WITH SINGLE-TONE DECODER. JUMPERS JUI THROUGH JU4 PROVIDE OPERATION WITHOUT SINGLE-TONE DECODER.
 VOLTAGE READINGS IN PARENTHESES: ARE LEVELS PRESENT WHEN THAT PARTICULAR CIRCUIT IS DECODING.
 TESTING POINT ONLY.
 UNLESS OTHERWISE STATED. ALL RESISTOR VALUES ARE IN OHMS (K = 1000); ALL CAPACITOR VALUES ARE IN MICROFARADS.

MODEL I ABLE

MODEL	SUFFIX	KIT	SU FFIX	DESCRIPTION
TLN1685A FOUR-USER		TLN5804A		FOUR-TONE DECODER CIRCUIT BOARD
CONTROL		TLN8782A		FOUR-TONE DECODER PANEL
				EPS-14249-0

TONE ''PRIVATE-LINE'' FOUR-USER CONTROL MODULE MODEL TLN1685A

FUNCTION

Decodes "Private-Line" tone codes and provides a low output as long as the code is received.

| | (NOTE 3)

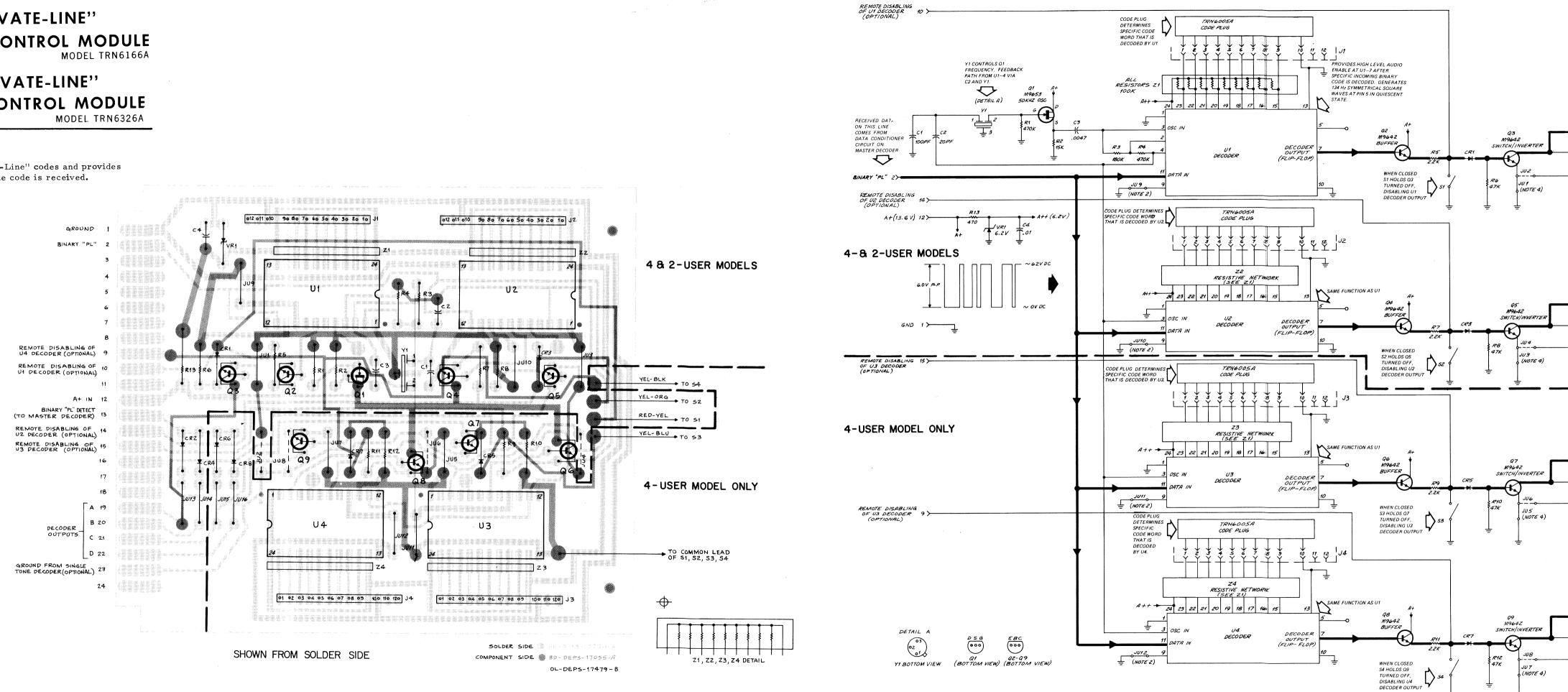
- SWITCHED GROUND OUTPUT </ 24 TO MASTER DECODER OUTPUT SWITCH GATING SIGNAL (GND) FROM ≺23 SINGLE-TONE DECODER (IF USED)
- (20 #2 DECODED OUTPUT (NOTE 3)

DEPS-14247-0

"PL" TONE INPUT FROM MASTER DECODER AMPLIFIER

21 #3 DECODED OUTPUT (NOTE 3)

GROUND


68P81026E83-A 2/23/76-NPC

"DIGITAL PRIVATE-LINE" FOUR-USER CONTROL MODULE

AND **''DIGITAL PRIVATE-LINE''** TWO-USER CONTROL MODULE

FUNCTION

Decodes "Digital Private-Line" codes and provides a low output as long as the code is received.

1000

EFERENCE	MOTOROLA
SYMBOL	PART NO.

PARTS LIST

			PARTS LI	ST	
			TRN6326A Two TRN6166A Fou		Module Module (NOTE III) PL-3460-A
			C1 C2 C3 C4	21-83798B01 21-82610C22 21-82428B09 21-82428B59	CAPACITOR, fixed: 100 pF ±5%; 200 V 20 pF ±5%; 200 V .0047 uF ±10%; 100 V .01 uF +80-20%; 200 V
JU13 (NOTE 3) CR2	7		CRl thru 4 CR5* thru 8*	48-83654H01 48-83654H01	DIODE: (SEE NOTE I) silicon silicon
Þ	LOW ON THIS LINE INDICATES CODE DECODED BY UT. ACTIVATES CORRESPONDING CODE PLUG ON		J1,2 J3*,4*	9-82071K01 9-82071K01	SOCKET code plug code plug
	MULTIPLE ENCODER BOARD.		Q1 Q2 thru 5 Q6* thru 9*	48-869653 48-869642 48-869642	TRANSISTOR: (SEE NOTE I) field-effect type M9653 NPN; type M9642 NPN; type M9642
JU14 (NOTE 3) CR4	(13 BINARY "PL" DETECT (13 (TO MASTER DECODER) LOW ON THIS LINE INDICATES CODE DECODED BY ONE OF THE DECODERS. LOW ON THIS LINE INDICATES CODE DECODED BY U2. ACTIVATES CORRESPONDING CODE PLUG ON MULTIPLE ENCODER BOARD. (20 DECODER OUTPUT B GROUND FROM (23 SINGLE TONE DECODER (DPTIONAL)	NOTES: 1. UNLESS OTHERWISE INDICATED: RESISTOR VALUES ARE IN OHMS; CAPACITOR VALUES ARE IN MICROFARADS. 2. JUMPERS JUB, JUID, JUIT AND JUID ARE CONNECTED 3. JUMPERS JUB, JUID, JUIT AND JUID ARE CONNECTED WHEN- EVER THE RECEIVED CODE DATA IS RETRANSMITTED. IF NEW CODE DATA IS GENER- ATED FOR RETRANSMISSION, THE CORRESPONDING JUMPER IS REMOVED. 4. BOTH JUMPERS IN JUMPER COMBINATIONS JUI-JUD, JUB- JUB, JUS-JUB, AND JUD-JUB ARE NEVER TO BE CONNECTED AT THE SAME TIME. JUI, JUB, JUS, AND JUD ARE THE NORMAL CONNECTIONS, JUD, JUB, JUB, AND JUB ARE CONNECTED WHEN THE REPEATER FUR- MISHES A GROUND INPUT AT PIN 23 FROM ANOTHER MODULE (SUCH AS A SINGLE TONE DECODER).	int pa:	egrated circuits	RESISTOR, fixed; ±5%; 1/4 W: unless otherwise stated 470k 15k 180k 2.2k ±10% 470 ±10%; 1/2 W <u>SWITCH:</u> spst; slide <u>INTEGRATED CIRCUIT:</u> (SEE NOTE I) type M6782 <u>VOLTAGE REGULATOR:</u> (SEE NOTE I) Zener type; 6.2 V <u>CRYSTAL:</u> (SEE NOTE II) 50 kHz <u>NETWORK:</u> resistor prmance, diodes, transistors, and must be ordered by Motorola
	LOW ON THIS LINE INDICATES CODE DECODED BY US. ACTIVATES CORRESPONDING CODE PLUG ON MULTIPLE ENCODER BOARD		que NOTEIII. Co use	ency, crystal fr mponents refere ed only with the	equency and crystal type number. enced with an asterisk (*) are 4-user control module. All other ed with both modules.
JUNG (NOTE 3) CRB		LEGEND			

- MAINTENANCE DATA

PRIMARY SIGNAL FLOW

= SECONDARY SIGNAL FLOW

EEPS-17047-B

22 DECODER OUTPUT D

CODE DECODED BY U4. ACTIVATES

CORRESPONDING CODE PLUG ON MULTIPLE ENCODER BOARD

LOW ON THIS LINE INDICATES

MAINTENANCE & TROUBLESHOOTING

This module may be serviced either while connected to the station or while connected to external test equipment as described in the Control Chassis section of this manual. The following procedure is written for out-of-station servicing but is functionally applicable to in-station servicing also.

Step 1. Remove the module from the chassis.

Step 2. Connect a 13.5 V DC power supply to the module so ground (-) is connected to pin 1 and the positive (+) terminal is connected to pin 12. Turn the power supply on.

Step 3. Connect a 5k-ohm resistor between pins 4 and 12.

Step 4. Disconnect both time selection jumpers and place them so they will not contact any portion of the circuitry.

Step 5. Connect a temporary jumper between pins 5 and pin 1.

Step 6. Refer to the schematic diagram and chart and note the desired timing cycle for different stages of the module. Use a stop-watch to compare the desired timing of highs and lows on a VTVM. Timing should be accurate to within +10%.

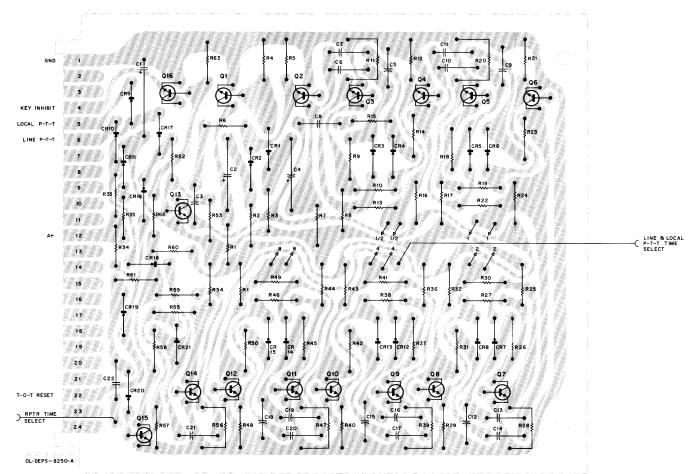
Step 7. Move the temporary jumper between pins 6 and 1 and repeat step 6.

Step 8. Move the temporary jumper to pins 22 and 1 and repeat step 6.

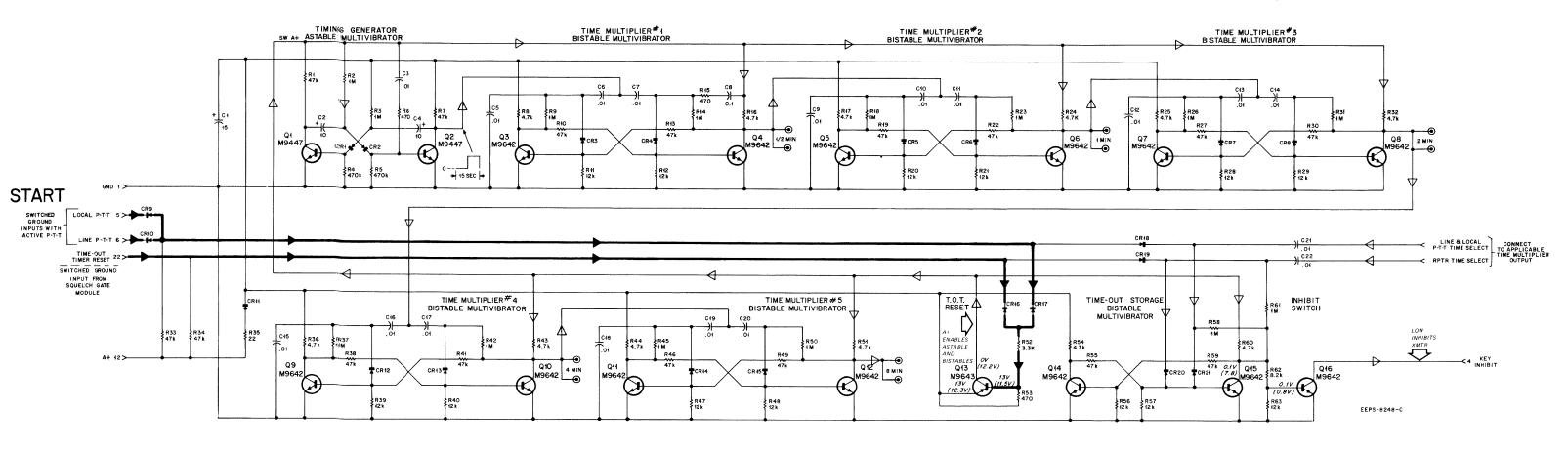
Step 9. If a defective stage is not located, check connections and continuity of plating for opens and shorts.

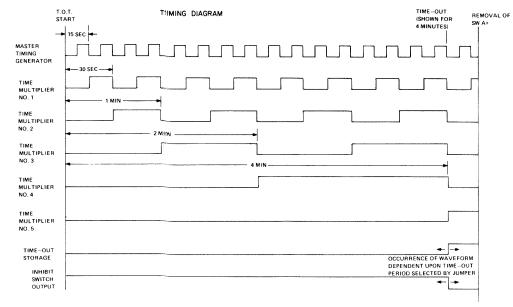
CIRCUIT DESCRIPTION

The timing function is started by either a line or local P-T-T signal, or by a reset signal from the squelch gate module. These starting signals are switched grounds which are applied to the base of reset switch Q13 through a diode or gate formed by CR9 and CR10, and another diode or gate, CR16 and CR17. When any one of these grounds reach the base of Q13, the stage is turned on, which causes switched A+ to be applied to all other stages of the Time-Out Timer module.


Application of switched A+ starts the master timing generator, which is an astable multivibrator (formed by Q1 and Q2) that operates at a rate of one cycle every 15 seconds. The transistors and capacitors in this stage are specially selected for low leakage and must be re- Q16 to go into saturation and provides a switched placed by low leakage components to retain the 15-second cycle. As shown in the waveform chart. The output section starts in the saturated condition and reverses every 7-1/2 seconds.

The five time multipliers are bistable multivibrators which actually perform frequency division. However, when dealing with low frequencies it is more convenient to refer to the time or period of one cycle; by halving the fre-

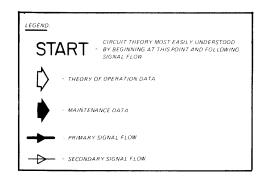

quency, the period is doubled. Each bistable starts with its output section saturated and its input section in cutoff, and reverses this condition only by application of a negative-going signal. This initially produces a low level at the time multiplier outputs. The first time multiplier must be held in this condition until the timing generator has stabilized. This is accomplished by applying a positive pulse to the cathode of CR4 at the instant the switched A+ is turned on. This pulse reaches CR4 through C8 and R15 to counteract a negative pulse which may be produced by the timing generator when it is first turned on. As the signal from the timing generator goes through the first complete cycle (goes to a high level and then returns to a low level) the condition of the time multiplier #1 is reversed such that Q3 is driven into saturation and the output section Q4 is cut off. This results in the output of time multiplier #1 going high. No other changes occur until the timing generator completes its second cycle, which causes time multiplier #1 to reset to the initial state. This reset produces a negativegoing input to the time multiplier #2, causing it to reverse states. This process continues through all five time multipliers with each one producing an output with a period which is exactly twice the period of the input. Once the desired time limit on continuous transmission has been determined, jumpers are connected to the output of the appropriate time multiplier. Different transmission times may be selected for base station or repeater functions. These jumpers route the negative-going multiplier output to the time-out storage multivibrator.


The time-out storage stage, formed by Q14 and Q15, is also a bistable multivibrator which acts as a driver for the inhibit switch, Q16. Assume that the timing sequence was initiated by a line or local P-T-T signal and that the base station function is connected to "Time-Out" after four minutes. Also assume that the repeater function is jumpered to time out after only two minutes. The low level signal from the twominute output is prevented from reversing the condition of the time-out storage bistable by the application of A+ through R34 and diode CR19 to the cathode of CR20. This logic high counteracts the effect of the negative-going pulse. When the period reaches four minutes, the fourth multiplier returns to its normal state and produces a low level output. This output is coupled through C21 as a negative pulse. This negative pulse is applied to the base of Q15 through CR21 and causes the storage bistable to change states. When this occurs, Q15 is driven into cutoff, causing the storage output to go high. This high level causes ground output.

The switched ground output turns off the transmitter. When the input is removed from the time-out timer reset stage, this stage cuts off and switched A+ is removed from all stages. As a result, the switched ground output is removed. When the input is again applied, the timer is instantly reset and another timing cycle starts.

SHOWN FROM SOLDER SIDE

TIME-OUT TIMER


MODEL TLN4636A

FUNCTION-

Limits period of time the transmitter may be keyed.

NOTES

- 1. UNLESS OTHERWISE STATED: RESISTOR VALUES ARE IN OHMS, CAPACITOR VALUES ARE IN MICROFARADS.
- VOLTAGES SHOWN IN PARENTHESES ARE NORMALLY MEASURED DURING TRANSMIT

	63P81015E41-E			
BOARD AND SUFFIX NO.	REF. SYMBOL	CHANGE	LOCATION	
TLN 4 636 A	CR1 CR2	WAS 48-82392B03 WAS 48-82392B03	Q1 BASE Q2 BASE	
	CR3 CR4 CR5	WAS 48-82392B03 WAS 48-82392B03 WAS 48-82392B03 WAS 48-82392B03 WAS 48-82392B03	Q3 BASE Q4 BASE Q5 BASE Q6 BASE	
	CR6 CR7 CR8 CR12	WAS 48-82392B03 WAS 48-82392B03 WAS 48-82392B03 WAS 48-82392B03	Q0 BASE Q7 BASE Q8 BASE Q9 BASE	
	CR12 CR13 CR14 CR15	WAS 48-82392B03 WAS 48-82392B03 WAS 48-82392B03 WAS 48-82392B03	Q10 BASE Q11 BASE Q12 BASE	
	CR20 CR21	WAS 48-82392B03 WAS 48-82392B03	Q15 BASE Q15 BASE	
T LN4636A - 1	R52	FROM 6-129269, 1.8k TO 6-124C61, 3.3k	Q13 BASE	

MOTOROLA PART NO. REFERENCE DESCRIPTION SYMBOL PARTS LIST TLN4636A Time-Out-Timer Board PL-1695-C CAPACITOR, fixed: uF ±10%; 25 V; unl stated C123-865136 15 ±20%; 20 V C2 23-82783B27 10 C3 21-82428B35 .01 +80-20%; 500 V C423-82783B27 10 C5, 6, 7 21-82428B35 .01 +80-20%; 500 V С8 8-82905G07 0.1; 50 V C9 thru 22 21-82428B35 .01 +80-20%; 500 V SEMICONDUCTOR DEVICE, diode: SEE NOTE CRithru 8, 48-83654H01 silicon 12 thru 15, 20, 21 CR9, 10, 11, 48-82392B03 silicon 16,17,18, 19 TRANSISTOR: SEE NOTE Q1, 2 48-869447 N-P-N; type M9447 N-P-N; type M9642 $Q3 \ thru \ 12$ 48-869642 Q13 48-869643 P-N-P; type M9643 Q14, 15, 16 48-869642 N-P-N; type M9642 RESISTOR, fixed: ±10%; 1/4 W; unl stated R 1 6-128902 47k R2.3 6-129189 1 meg ±5% R4, 5 6-129148 470k R6 6-127801 470 R7 6-128902 47k R8 6-127804 4.7k R9 6-129013 l meg R10 6-128902 47k R11.12 6-129230 12k R13 6-128902 47k R14 6-129013 1 meg R15 6-127801 470 R16, 17 6-127804 4.7k R18 6-129013 l meg R19 6-128902 47k R20, 21 6-129230 12k R22 6-128902 47kR23 6-129013 l meg R24.25 6-127804 4.7k R26 6-129013 l meg R27 6-128902 47k R28, 29 6-129230 12k R30 6-128902 47k R31 6-129013 l meg R32 6-127804 4.7k R33, 34 6-128902 47k R35 6-124B09 22 R36 6-127804 4.7k R37 6-129013 1 meg R38 6-128902 47k R39, 40 6-129230 12k R41 -128902 47k R42 6-129013 l meg R43, 44 6-127804 4.7k R45 6-129013 l meg R46 6-128902 47k R47, 48 6-129230 12k R49 6-128902 47k R50 6-129013 l meg R51 6-127804 4.7k R52 6-124C61 3.3k R53 6-127801 470 R54 6-127804 4.7k R55 6-128902 47k 6-129230 R56.57 12k

R58

R59

R60

R61

R62

R63

6-129013

5-128902

5-127804

5-129013

6-128686

5-129230

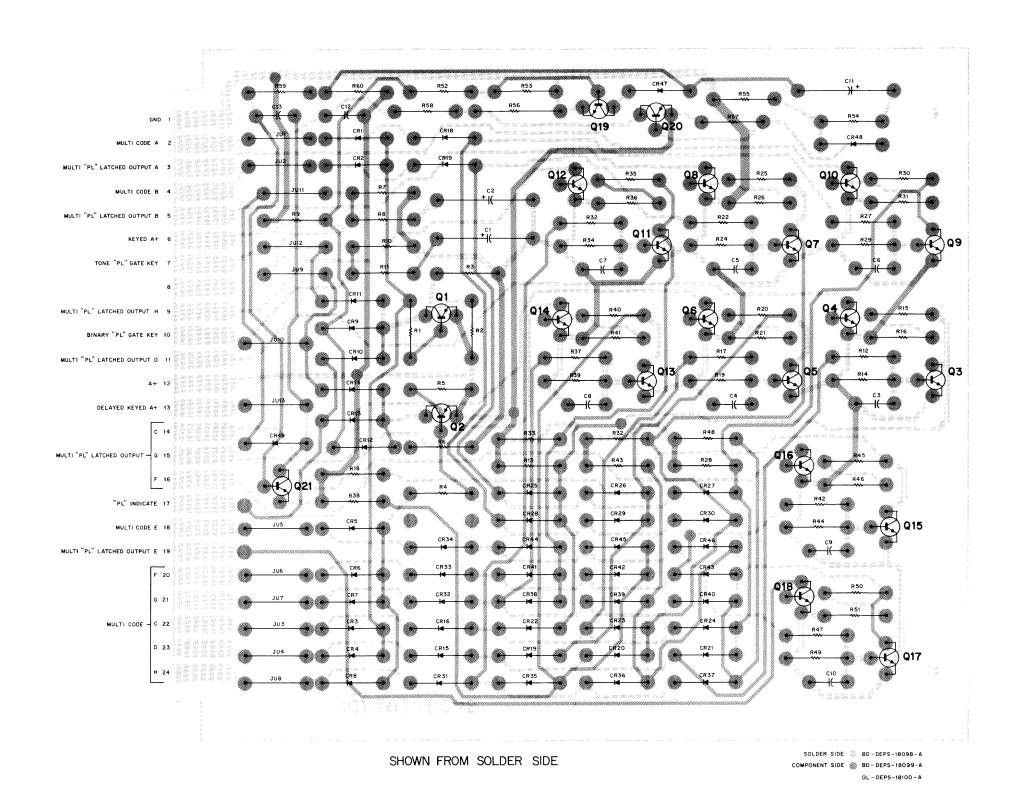
l meg

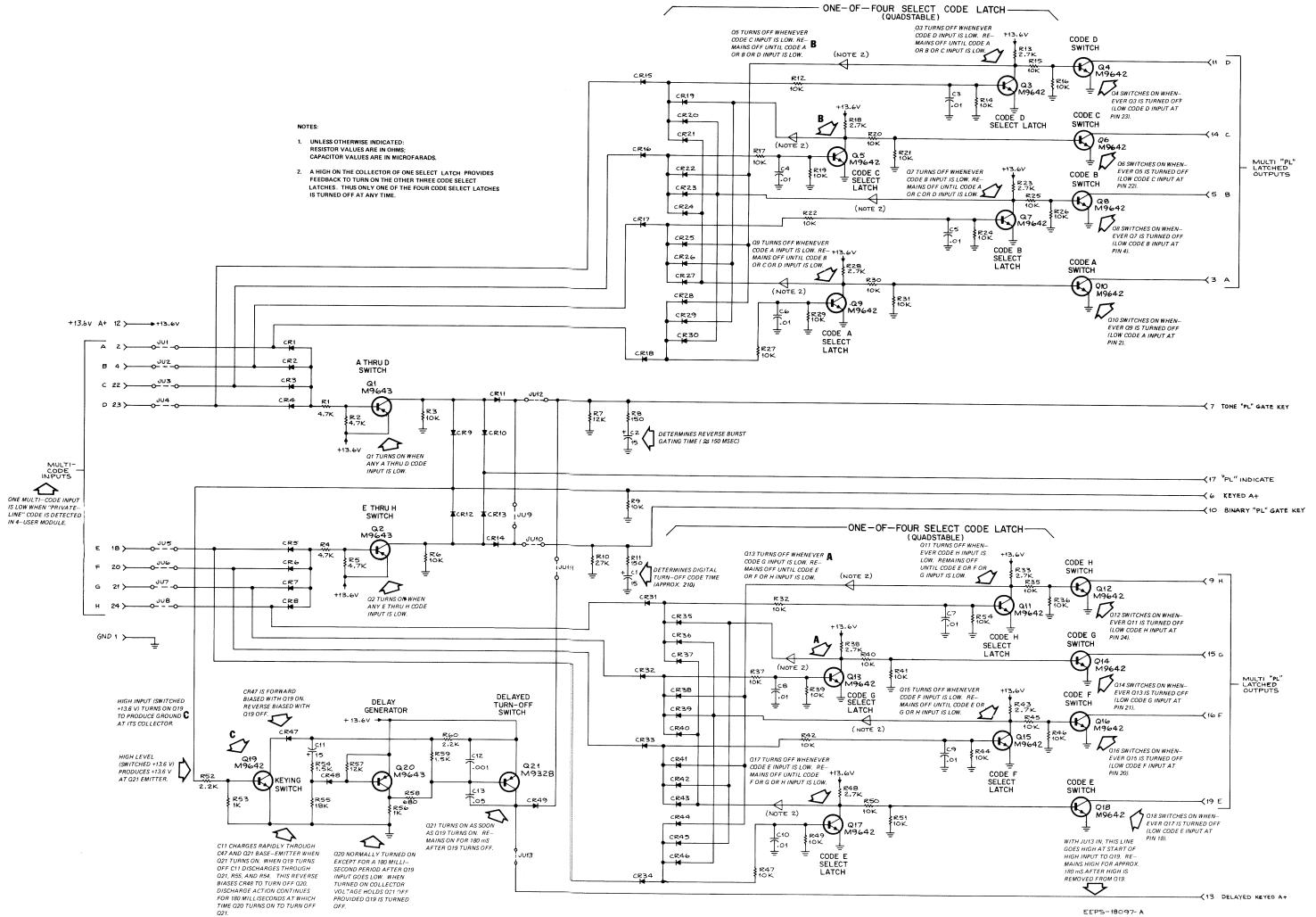
47k

4.7k

8.2k

12k


l meg


REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

NON-REFERENCED ITEMS:						
	45-83914C01 9-83011H01 39-10184A30 43-865080 39-10184A24 64-84937D01	GUIDE, card; 2 req'd RECEPTACLES, female; 9 req'd. TERMINALS, male;10 req'd. BUSHING; 2 req'd TERMINAL, female; 2 req'd. PANEL, time-out timer				

NOTE:

Replacement diodes and transistors must be ordered only by Motorola part number for optimum performance.

DIODE LOGIC MODULE

FUNCTION-

Adapts community repeater for cross coding (transmits a different PL code than was received). Provides a logic interface which accepts a low logic level from any one of eight tone or binary "Private-Line" decoders and provides a logic low to activate a corresponding tone or binary "Private-Line" encoder.

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION					
PARTS LIST							
TRN6327A Dio	de Logic Module	PL-3571-0					
C1, 2 C3 thru 10 C11 C12 C13	23-82783B13 21-82428B59 23-82783B24 21-83596E13 21-82372C04	CAPACITOR, fixed: 15 uF ±5%; 25 V .01 uF +80-20%; 200 V 15 uF ±10%; 25 V .001 uF ±10%; 100 V .05 uF +80-20%; 25 V					
CR1 thru 49	48-83654H01	<u>DIODE:</u> (SEE NOTE) silicon					
Q1, 2, 20 Q3 thru 19 Q21	48-869643 48-869642 48-869328	TRANSISTOR: (SEE NOTE) PNP; type M9643 NPN; type M9642 PNP; type M9328					
R1, 2, 4, 5 R3, 6, 9, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47,	6-124C65 6-124C73	RESISTOR, fixed: ±10%; 1/4 w; unless otherwise stated 4.7k 10k					
49, 50, 51 R8, 11 R7, 57 R10 R13, 18, 23, 28, 33, 38, 43, 48	6-124C29 6-124A75 6-124A83 6-124C59	150 12k ±5% 27k ±5% 2.7k					
R52,60 R53 R54,59 R55 R56 R58	6-124C57 6-124C49 6-124A53 6-124A79 6-125A40 6-124A45	2.2k 1k 1.5k ±5% 18k ±5% 1k ±5%; 1/2 W 680 ±5%					
	NON-REFERE	ENCED IT EM					
	1-80781B19	CIRCUIT BOARD ASSY. includes 9-83011H01 RECEPTACLE, pin; 24 req'd. 43-865080 STANDOFF; 2 req'd.					

68P81026E84-A 2/23/76-NPC

1. FUNCTIONAL OPERATION

 \smile

When a switched ground is received from the diode logic module, one of the PL tone oscillators is enabled. A fast start feature provides usable output from the selected oscillator within 30 milliseconds. A reverse burst feature reverses the phase of the generated PL tone for approximately 130-180 milliseconds after the transmitter is unkeyed. This dampens the "Vibrasponder" resonant reeds in listening receivers and eliminates receiver squelch tail noise bursts at the end of each message.

2. CIRCUIT DESCRIPTION

2.1 Operation of all four PL tone oscillators

is identical. Therefore, the following theory describes only the circuit operation of PL tone oscillator No. 1, and is applicable to the other three. Refer to Figure 1 and the schematic diagram.

2.2 The tone oscillator consists basically of a two-stage oscillator (Q101 and Q104),

a turn-off stage (Q103), and tone amplifiers (Q904 and Q905). The frequency-determining element of the oscillator is "Vibrasender" resonant reed E101 (an electromechanical equivalent of a parallel-tuned high Q tank circuit). The output stage of the oscillator Q104 provides a tone from both its emitter and its collector. Tones from the two outputs are of opposite phase, with the Q104 emitter supplying the PL tone during a transmission and the Q104 collector

supplying the out-of-phase tone (reverse burst) at the end of a transmission. These tone outputs are fed into separate amplifiers (Q901 and Q903) where they are amplified to a usable level before routing to the PL tone gate and reverse gate.

2.3 Passage of tones from one or the other outputs to the base of tone amplifiers Q904 and Q905 is controlled by the PL tone gate and the reverse burst gate. During a transmission, the PL tone gate is open, passing the tones from the emitter output of Q104, through amplifierQ903, to tone amplifiers Q904 and Q905. From the collector of Q904 the tone is fed into the transmitter modulator. (At this time, the reverse burst gate is closed.) When the operator releases his push-to-talk switch at the end of a transmission, the PL tone gate closes, terminating transmission of the in-phase "Private-Line" tone. Simultaneously the reverse burst gate opens, passing the out-of-phase tone signal from Q104 through amplifier Q901 to tone

amplifiers Q904 and Q905. Q902 is an inverter stage that feeds the reverse burst switch (0906).

2.4 The oscillator turn-off circuit (Q103).

connected across the secondary winding of the "Vibrasender" resonant reed coil, shorts that winding so as to disable the tone output of Q101 whenever ground is removed from the oscillator turn-on point (pin 2).

2.5 The purpose of the Q102 pulse circuit is to "fast-start" the tone oscillator to permit faster receiver PL squelch action thereby speeding up system operation. The pulse circuit increases the PL tone oscillator rise time to a usable level in approximately 30 milliseconds instead of the usual 2-1/2 seconds. This is accomplished by pulsing the primary input of the tone oscillator "Vibrasender" resonant reed with a 3 millisecond pulse which causes the tone oscillator to "fast-start".

3. MAINTENANCE

- RECOMMENDED TEST EQUIPMENT 3.1
 - a. Motorola SLN6221A "Private-Line" Tone Generator--used for testing "Vibrasender" resonant reed.
 - b. Motorola solid state ac voltmeter -used for tone level measurements.
 - c. General purpose oscilloscope -valuable for signal tracing and locating sources of distortion.
 - d. Motorola solid state dc multimeter --used for dc voltage measurement.
 - e. Motorola S1324A Digital Frequency Meter or S1325A Digital Frequency and Deviation Meter--used for measuring PL tone frequency.

3.2 PERFORMANCE TEST

Measure frequency deviation of the transmitter in which the encoder is installed. With the transmitter keyed and PL tone modulation (only), deviation should read ± 0.5 to ± 1.0 kHz.

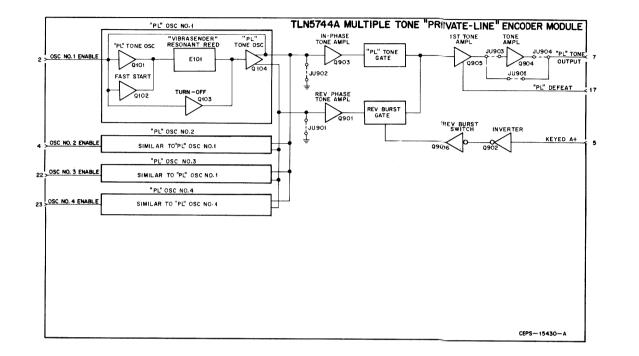


Figure 1.

3.3 TROUBLESHOOTING

Step 1. If no deviation is measured, the trouble may lie in the tone oscillator or tone output circuit. The trouble may be isolated by the following steps.

- a. Check A+ input to encoder.
- b. Check ac signal voltage at collector of O903.
- c. If signal is present, check Q904.
- d. If no signal is present any component in the oscillator loop could cause the trouble. Check the "Vibrasender" resonant reed in the "Private-Line" tone generator.
- e. If the tone generator does not produce an output signal the reed is defective.

MULTIPLE TONE ''PRIVATE-LINE'' ENCODER MODULE

MODEL TLN5744A

FUNCTION -

Generates a tone "Private-Line" signal to be transmitted in community repeaters where crosscoding is required. A low input from a diode logic module determines which of four tone oscillators is enabled.

Encoder Module Functional Diagram

f. If the reed is good, replace it in the encoder amd make dc voltage measurements in the tone oscillator circuit to locate the defective component.

Step 2. If low deviation is measured, check ac signal voltages and compare them with the schematic voltage readings to find the source of trouble.

Step 3. If deviation is normal, but calls are not being received, check the frequency of the PL encoder tone. If off-frequency, replace the "Vibrasender" resonant reed.

Step 4. If squelch tail noise bursts are heard by all listening receivers, check dc voltages of Q902 and Q906 in keyed and unkeyed conditions.

Step 5. If too much tone deviation is measured, check feedback amplifier O904.

(Sheet 1 of 2) 2/23/76-NPC

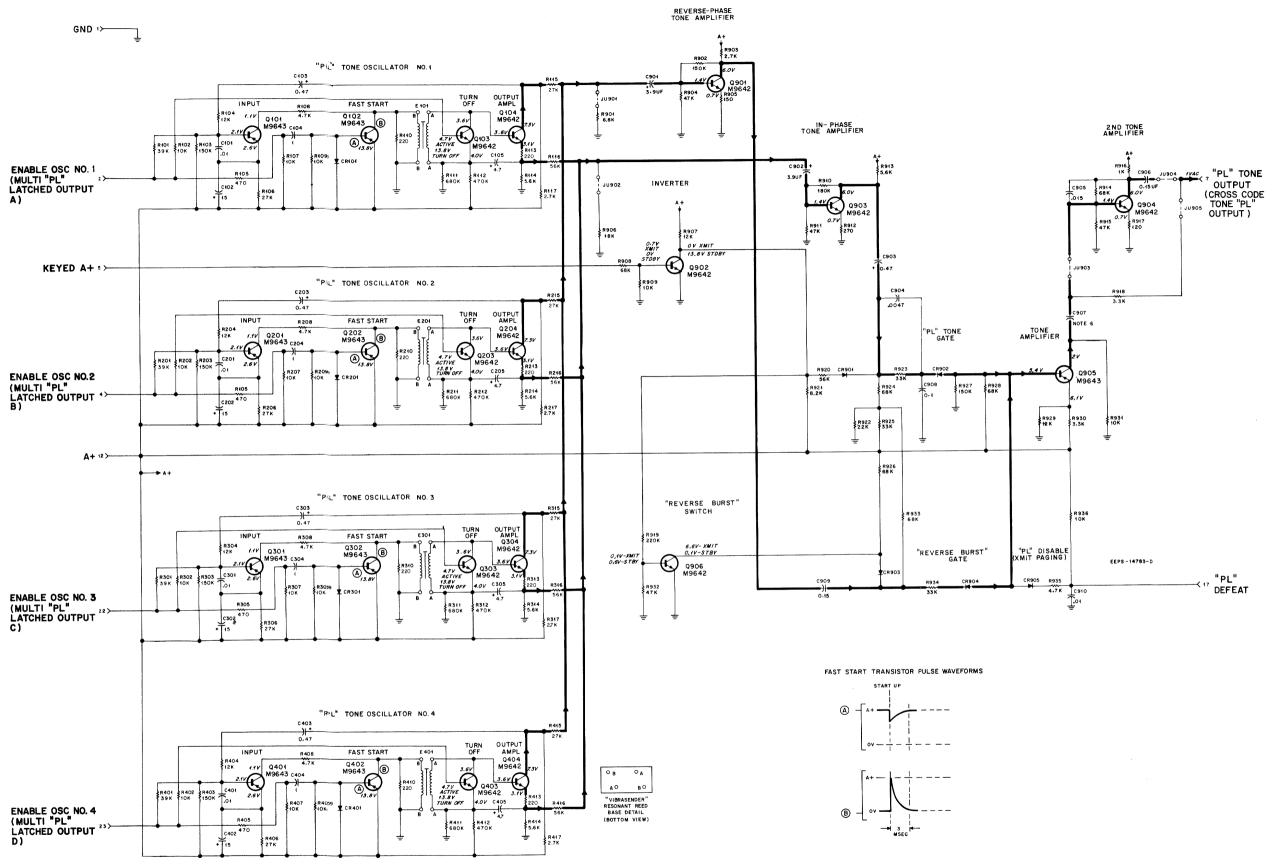
	REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION	REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION
	PARTS LI	ST		R212	6-129149	470k
			-Line" Encoder Module PL-2863-C	R213	6-131275	220
]	rLN5744A Multip	ole lone Frivate	STILLE Fucoder module 1 1-1005	R214	6-129982	5.6k
			CADA CITOD finade uE ±10%	R215	6-127806	$27k \pm 10\%$
			<u>CAPACITOR</u> , fixed: uF ±10%; 50 V; unless otherwise stated	R216	6-129242	56k ±10% 2.7k
	a.a.	0.00005001	.01	R217 R301	6-129707 6-129777	39k
~ 1	C101	8-82905G01	$15 \pm 20\%$; 25 V	R302	6-129668	10k
	C102	23-865136 23-84762H14	0.47 ±20%	R302 R303	6-128683	150k
- 1	C103	23-82783B08	$1.0 \pm 20\%$; 35 V	R304	6-129887	12k
	C104	23-865137	4.7; 25 V	R305	6-127801	470 ±10%
	C105 C201	8-82905G01	.01	R306	6-127806	$27k \pm 10\%$
	C201	23-865136	15 ±20%; 25 V	R307	6-129225	$10k \pm 10\%$
	C202	23-84762H14	$0.47 \pm 20\%$	R308	6-129669	4.7k
	C204	23-82783B08	1.0 ±20%; 35 V	R309	6-129225	10k ±10%
	C205	23-865137	4.7; 25 V	R310	6-131275	220
	C301	8-82905G01	.01	R311	6-131857	680k
	C302	23-865136	15 ±20%; 25 V	R312	6-129149	470k
	C303	23-84762H14	$0.47 \pm 20\%$	R313	6-131275	220
	C304	23-82783B08	1.0 ±20%; 35 V	R314	6-129982	5.6k
	C305	23-865137	4.7; 25 V	R315	6-127806	27k ±10%
	C401	8-82905G01	.01	R316	6-129242	56k ±10%
	C402	23-865136	15 ±20%; 25 V	R317	6-129707	2.7k
	C403	23-84762H14	0.47 ±20%	R401	6-129777	39k
	C404	23-82783B08	1.0 ±20%; 35 V	R402	6-129668	10k
	C405	23-865137	4.7; 25 V	R403	6-128683	150k
	C901, 902	23-84762H08	3.9 ±20%; 15 V	R404	6-129887	12k
1	C903	23-84762H14	0.57 ±20%	R405	6-127801	470 ±10%
	C904	8-82905G26	.0047; 100 V	R406	6-127806	27k ±10%
	C905	8-82905G10	.015; 100 V	R407	6-129225	10k ±10%
	C906	8-82905G05	0.15	R408	6-129669	4.7k
	C907		NOTE 6	R409	6-129225	10k ±10%
	C908	8-82905G07	0.1	R410	6-131275	220
	C909	8-82905G05	0.15	R411	6-131857	680k
	C910	8-82905G01	.01	R412	6-129149	470k
1				R413	6-131275	220
			SEMICONDUCTOR DEVICE,	R414	6-129982	5.6k
	· · · · · · · · · · · · · · · · · · ·		diode: (SEE NOTE)	R415	6-127806	27k ±10%
	CR101,201,			R416	6-129242	56k ±10%
	301,401,901			R417	6-129707	2.7k
1	thru 905	48-83654H01	silicon	R901	6-128687	$6.8k \pm 10\%$
				R902	6-128683	150k
			TRANSISTOR, NPN: unless	R903	6-129707	2.7k
/			otherwise stated (SEE NOTE)	R904	6-131527	47k
	Q101, 102	48-869643	PNP; type M9643	R905	6-131276	150
	Q103, 104	48-869642	type M9642	R906	6-128904	$18k \pm 10\%$
	Q201, 202	48-869643	PNP; type M9643	R907	6-129887	12k
	Q203, 204	48-869642	type M9642	R908	6-129299	68k
	Q301, 302 Q303, 304	48-869643 48-869642	PNP; type M9643 type M9642	R909 R910	6-129668 6-129229	10k 180k ±10%
	Q303, 304 Q401, 402	48-869643	PNP; type M8643	R911	6-128902	47k
		48-869642	type M9642	R912	6-131525	270
	Q403, 404 Q901 thru904	48-869642	type M9642	R913	6-129882	5.6k
	Q901 thru 904 Q905	48-869643	PNP; type M9643	R914	6-129299	68k
	Q905 Q906	48-869642	type M9642	R915	6-128902	47k
	Q900	40-007042	type W7042	R916	6-129805	lk
			RESISTOR, fixed: ±5%; 1/4 W;	R917	6-10401A27	120
			unless otherwise stated	R918	6-124A61	3. 3k
	R101	6-129777	39k	R919	6-129147	$220k \pm 10\%$
	R101 R102	6-129668	10k	R920	6-129242	56k
	R102 R103	6-128683	150k	R921	6-128686	8.2k ±10%
	R105 R104	6-129887	12k	R922	6-129667	22k
	R104 R105	6-127801	470 ±10%	R923	6-129526	33k
	R105 R106	6-127806	27k ±10%	R924	6-129299	68k
	R107	6-129225	10k ±10%	R925	6-129526	33k
	R108	6-129669	4.7k	R926	6-129299	68k
	R109	6-129225	10k ±10%	R927	6-128683	150k
	R110	6-131275	220	R928	6-129299	68k
	R111	6-131857	680k	R929	6-129887	12k
	R112	6-129149	470k	R930	6-129981	3.3k
	R113	6-131275	220	R931	6-129668	10k
	R114	6-129982	5.6k	R932	6-128902	47k ±10%
	R115	6-127806	27k ±10%	R933	6-129299	68k
	R116	6-129242	56k ±10%	R934	6-129526	33k
	R117	6-129707	2.7k	R935	6-129669	4.7k
	R201	6-129777	39k	R936	6-129668	10k
	R202	6-129668	10k		L	L
	R203	6-128683	150k		NON-REFERE	ENCED ITEMS
	R204	6-129887	12k		1	
	R205	6-127801	470 ±10%		9-84910C01	SOCKET, "Vibrasponder"
	R206	6-127806	27k ±10%			resonant reed
/	R207	6-129225	10k ±10%		45-83914G01	CHIDE PAUL
	R208	6-129669	4.7k		45-83914G01 3-8022	GUIDE RAIL, circuit board
	R209	6-129225	10k ±10%		4-7683	SCREW, machine: 4-40 x 1/4 LOCKWASHER: No. 4
	***0 /					
	R210 R211	6-131275 6-131857	220 680k	NOTE:		performance, diodes, transisto

OTES:		ENABLE OS (Multi "Pl Latched O B)
1.	UNLESS OTHERWISE STATED: CAPACITOR VALUES ARE IN MICROFARADS. RESISTOR VALUES ARE IN OHMS.	

2. UNLESS OTHERWISE STATED: VOLTAGES REPRESENT THE ACTIVE STATE AND ARE TAKEN WITH RESPECT TO CHASSIS GROUND.

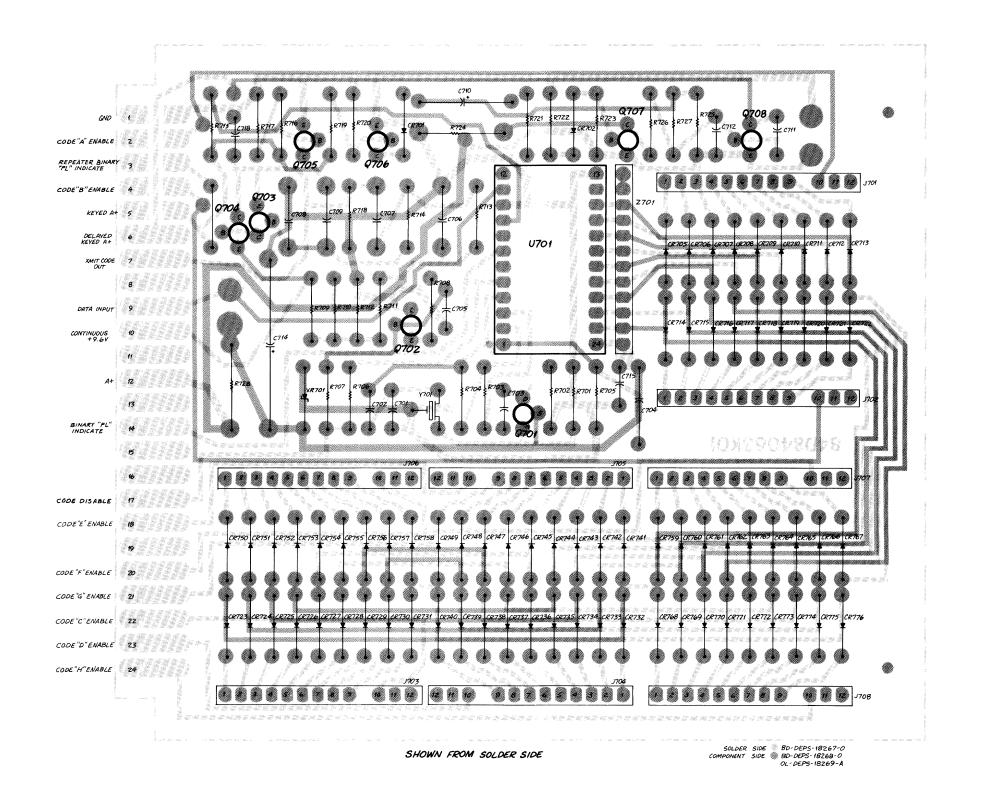
3. ALL AC VOLTAGE MEASUREMENTS ARE RMS VALUE.

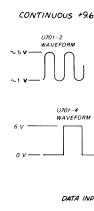
ALL DC VOLTAGE MEASUREMENTS MAY BE TAKEN WITH 20,000 OHM-PER-VOLT METER.

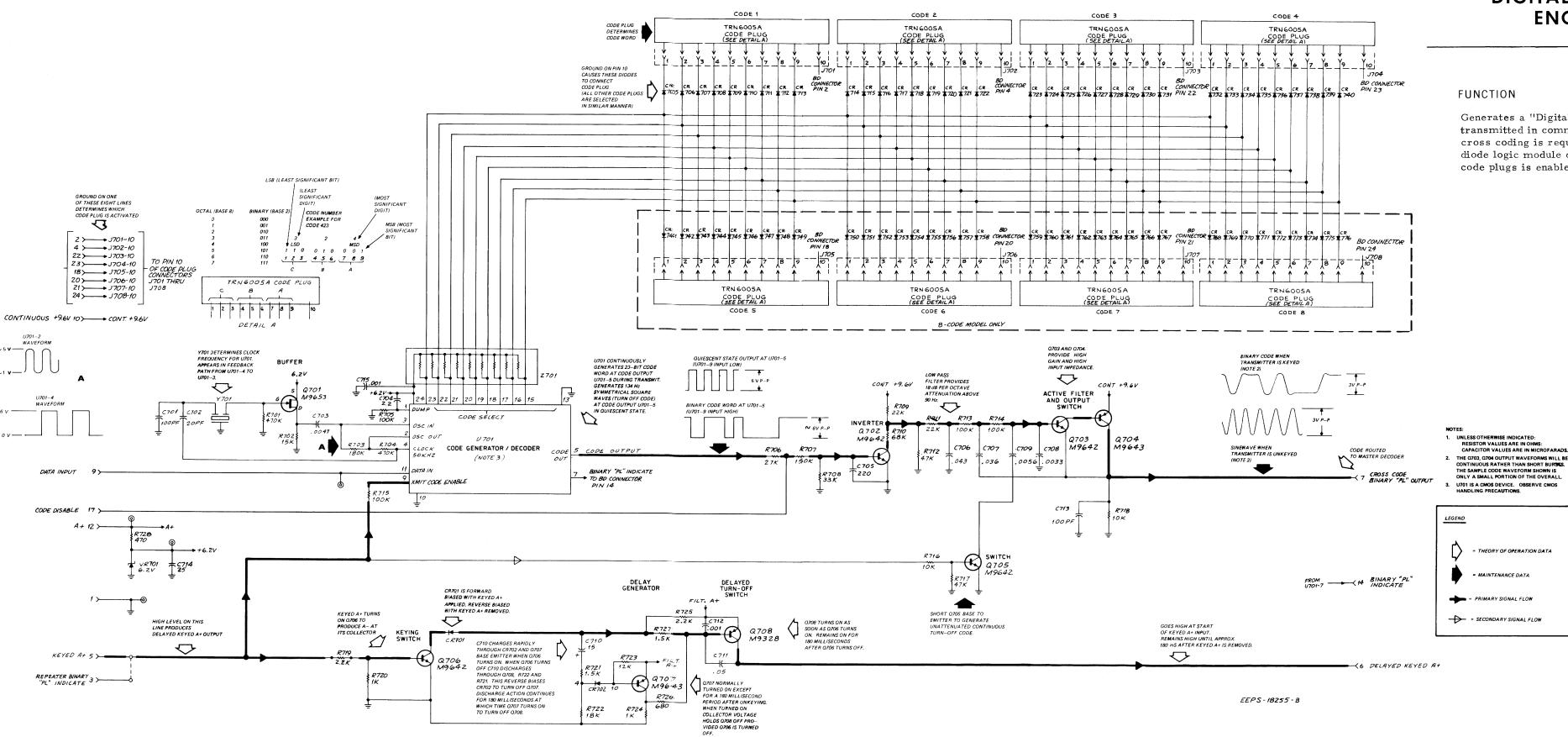

5. JUMPER TABLE

NOTES:

JUMPER	STATUS
JU901,902	IN FOR 4-FREQUENCY APPLICATIONS; OUT FOR 8-FREQUENCY APPLICATIONS
JU903,904	IN WHEN TRANSMITTER-EXCITER UTILIZES DIRECT FREQUENCY MODULA- TION: OUT WHEN DIRECT FM IS NOT USED (SERRASOID MODULATOR IS INCORPORATED)
JU905	OPPOSITE OF JU903 & JU904 OUT FOR DIRECT FM; IN OTHERWISE.


CAPACITOR C907 IS PART OF TLN5747A "PL" CONVERTER BOARD KIT. REFER TO APPLICABLE PARTS LIST FOR COM-PONENT VALUE.


NEPS-15370-A



TLN5744A Multiple Tone "Private-Line" Encoder Module Schematic Diagram and Circuit Board Detail Motorola No. PEPS-14784-C (Sheet 2 of 2) 2/23/76-NPC

MULTIPLE **''DIGITAL PRIVATE-LINE'** ENCODER MODULE

MODEL TRN6413A

Generates a "Digital Private-Line" code to be transmitted in community repeaters where cross coding is required. A low input from a diode logic module determines which of four code plugs is enabled.

68P81026E86-A 2/23/76-NPC

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION
SYMBOL	PART NO.	

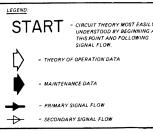
PARTS LIST

PARIS LISI							
TRN6413A Mul	<u>tiple Encoder</u> T	PL-3562-0					
		CAPACITOR, fixed: uF;					
		unless otherwise stated					
C701,713	21-831125	100 pF ±10%; 300 V					
C702	21-82133G24	$20 \text{ pF} \pm 5\%$; 500 V					
C703	21-82428B09	.0047 ±10%; 100 V					
C704 C705	23-82783B16 21-835 9 6E10	2.2 $\pm 10\%$; 15 V 220 $-\Sigma$ $\pm 20\%$, 500 V					
C706	8-83813H14	220 pF ±20%; 500 V .043 ±5%; 50 V					
C707	8-83813H24	.036 ±5%; 50 V					
C708	8-83813H27	.0033 ±5%; 50 V					
C709	8-83813H26	.0056 ±5%; 500 V					
C710	23-82783B24	15 ±10%; 25 V					
C711	21-82372C04	.05 ±10%; 25 V					
C712,715	21-83596E13	.001 ±10%; 100 V					
C714	23-83210A01	25 +150-10%; 25 V					
CR701, 702, 705 thru 776	48-83654H01	DIODE: (SEE NOTE I) silicon					
J701 thru 708	9-82071K01	CONNECTOR, receptacle: female; 10 contact					
		TRANSISTOR: (SEE NOTE I)					
Q701	48-869653	field-effect; M9653					
Q702, 703, 705,	48-869642	NPN; type M9642					
706							
Q704, 707 Q708	48-869643	PNP; type M9643					
2100	48-869328	PNP; type M9328					
		RESISTOR, fixed: ±5%; 1/4 W; unless otherwise stated					
R701,704	6-124B14	470k					
R702	6-124A77	15k					
R703	6-124B04	180k					
R705, 715	6-124C97	100k ±10%					
R706 R707	6-124A83	27k					
R708	6-124B02	150k					
R709,711	6-124C85 6-124A81	33k					
R710, 722	6-124A81	22k 18k					
R712,717	6-124A89	47k					
R713, 714	6-124A97	100k					
R716, 718	6-124A73	10k					
R719, 725	6-124C57	2.2k ±10%					
R720	6-124C49	$1k \pm 10\%$					
R721,729	6-124A53	1.5k					
R723	6-124A75	12k					
R724	6-125A49	lk					
R726	6-124A45	680					
R727	6-125C41	470 ±10%; 1/2 W					
U701	51-84267A82	INTEGRATED CIRCUIT: (SEE NOTE I) type M6782					
VR701	48-83696F07	VOLTAGE REGULATOR: (SEE NOTE I) Zener; 6.2 V					
¥701	48-82003K01	CRYSTAL: (SEE NOTE II) resonator; 50.000 KC					
Z701	1-80772B36	RESISTOR NETWORK: pull-up, 10 pin					
NOTE:							

NOTE:

I. For optimum performance, diodes, transistors and integrated circuits must be ordered by Motorola part number.

II. When ordering crystal units, specify carrier frequency, crystal frequency and crystal type number.



- VALUES ARE IN OHMS (K = 1 VALUES ARE IN MICROFA

2. 3.	COMBINATION OF CONDITIONS: N = NOISE Q = QUIETING T = TONE							
1	PANYING GRAPH FOR RELAY CONTACT RATINGS . JUMPER CONNECTIONS TABLE FOR REPEATER OPERATION.							
	JUMPER	REPEAT	ER (RT)	COMMUNITY R	EPEATER (R)			
	JU1 (NOTE 7)	IN FOR NON-LOCK	OUT FOR LOCK	IN FOR NON-LOCK	OUT FO R LOCK			
	JU2 (NOTE 7)	OUT FOR NON-LOCK	IN FOR LOCK	OUT FOR NON-LOCK	IN FOR LOCK			
	JU3	1	iN		IN			
	JU 4	00	OUT		OUT			
	JU5	OUT		IN				
	JU6	iN		OUT				
	JU7	OUT		OUT				

FREQUENCY-DETERMINING COMPONENT. SEE PARTS LIST FOR

VALUE: VOLTAGE READINGS AND WAVEFORMS ARE ±20%. THIS MODULE CAN BE STRAPPED FOR NON-LOCKED OF LOCKED OPERATION VALUMERS, UNI AND 2. NON-LOCKED SIGNIFIES THAT DECODER OUTPUTS AUTOMATINGLEY NEVERT BACK TO THE "BEFORE RECEVED SIGLE-DUE CODE" STATE (AFTER THE SEPORE OCCUPATIONAL ONLY ADDRESS OF A DATA THE SECOND ONTER ADDRESS OF A DATA THE SECOND ONTER ADDRESS OF A DATA THE SECOND ONTER ADDRESS OF A DATA THE ADDRESS OF ADDRESS OF ADDRESS OF A DATA THE ADDRESS OF ADDRESS O

SINGLE TONE DECODER MODULE

MODEL TLN1181A

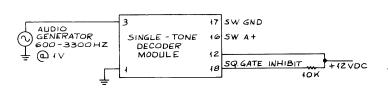
FUNCTION

Decodes audio freq. tone to control external circuitry with switched ground and/or voltage levels.

MODEL COMPLEMENT

Model	Ver- sion	Board	Ver- sion	Panel	Ver- sion
TLN1181A		TLN8773A		TLN8774A	
TLN4151A					
Relay		-	-	-	-
(optional)					

MAINTENANCE AND TROUBLESHOOTING


This module can be serviced either while in the control chassis or while out. The following procedure is for out-of-chassis servicing but it is functionally applicable to in-chassis servicing as well.

Step 1. Remove the single-tone decoder module and check the jumpers at this time for correctness in this module's mode of operation. Note any errors and continue with the test procedure.

<u>Step 2.</u> Connect jumpers in test scheme as follows:

OUT - JU1, JU2, JU4 IN - JU3, JU5, JU6, JU7

<u>Step 3.</u> Set-up test equipment as follows:

Step 4. Perform an overall module operation check by injecting the proper single-tone frequency on pin 3. Pin 18 should be at A+ and remain there after approximately 300 milliseconds.

Removal of the single-tone frequency should immediately cause pin 18 to go to ground potential.

If the output is abnormal, proceed to step 5.

Step 5. Place the on-test switch in the test position. Pins 16 and 18 should read A+ and pin 17 should read ground potential.

Return the switch to the ON position. Pins 16 and 18 should drop to near 0 volts and pin 17 should go to A+.

If all voltages are abnormal, check the dc voltages in switches Q756 and Q757, Schmitt trigger Q758 and Q759, and switch Q760. If pin 16 is normal but pins 17 and 18 are abnormal, check Q761. If only pin 18 is abnormal, check Q762. Correct the trouble and recheck step 4.

If all voltages are normal, stages Q756 through Q762 are operating satisfactorily. Proceed to step 6.

<u>Step 6.</u> Inject the proper single-tone frequency at pin 3. Measure waveforms and voltages as shown u on the schematic diagram for stages Q751 through 🗧 Q755. Correct any trouble and recheck step 4.

Step 7. Rearrange jumpers that were changed in step 2 (if any).

PARTS LIST SHOWN ON BACK 68P81002E96-M 11/5/76-NPC

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION
PARTS LI	ST	
TLN8773A Singl	e-Tone Decoder	Board PL-456-A
		CAPACITOR, fixed: uF ±10%;
C751 C752 C753 C754	21D82187B29 8D82905G11 8D82905G01 8D82905G02	50 v; unl. stated .001; 100 v 0.22 .01 .022
C755,761 C756	8D82905G07	0.1 (see "FREQUENCY-DETER- MINING COMPONENTS")
C757 C758, 760 C759	23D82783B08 23D83214C02 23D82601A25	1 ±20%; 35 v 15 ±20%; 25 v 100 +150-10%; 20 v
CR751 thru 756	48C82392B03	SEMICONDUCTOR DEVICE, diode: (SEE NOTE) silicon
L751	24C84200A01	<u>COIL, AF:</u> 1 H
Q751, 752, 753, 755, 757,	48R869570	<u>TRANSISTOR</u> : (SEE NOTE) N-P-N; type M9570
758, 759, 762 Q754, 756, 760 Q761	48R869571 48R869568	P-N-P; type M9571 N-P-N; type M9568
		RESISTOR, fixed: ±10%; 1/4 w; unl. stated
R751	6S129226	100K
R752,757	6S129227	270K
R753	65129148	470K
R754,759,773, 776,790	65129225	10K
R755,787	656022	330; 1/2 w
R756,777,782	6S128685	22K
R758	6S129228	330K
R760 R761 764 790	6S129775	330
R761, 764, 780, 785, 788	65128689	2.2K
R762		(see "FREQUENCY-DETER- MINING COMPONENTS)
R763	65129269	1.8K
R765,781	6S129617	120
R766,779	6S127804	4.7K
R767,769,772, 775	6S128902	47K
R768	6S129235	1.2K
R770	6S129232	3.9K
R771	6S5621	10; 1/2 w
R774	6S129147	220K
R778	6S127805	15K
R783,784 R786	6S128687 6S6229	6.8K 1K; 1/2 w
R789	656229 656397	1K; 1/2 w 22K; 1/2 w

FREQUENCY DETERMINING COMPONENTS

The frequency-determining components of this decoder are C756 and R762. In some cases, C756 consists of two capacitors connected in parallel. Refer to the following. table.

iau	C756		R762	
	0,50			RESISTOR,
FREQ.	MOTOROLA	CAPACITOR,	MOTOROLA	fixed: ±10%;
(Hz)	PART NO.	fixed:	PART NO.	1/4 w;
600	8D84326A27	.0557uF ±20%;	65127803	1.5K
000	0001000101	50 v	00101000	
	&8D84326A06	.0095 uF ±3%;		
	@0D045E01100	50 v		
750	8D84326A26	.0420 uF ±2%;	65127803	1.5K
150	010045201120	50 v	001210005	1, 511
900	8D84326A24	.0261 uF ±2%;	65128689	2.2K
900	0104JL0AL4	50 v	00120009	<i>L</i> , <i>L</i> 11
	&8D84326A02	.0030 uF ±3%;		
	& OD 04 JE OA 0E	50 v		
1050	8D84326A23	.0213 uF ±2%;	65129231	3.3K
10.50	0D04JE0AEJ	50 v	0012/001	5. 51
1200	8D84326A08	.0158 uF ±3%;	65129231	3.3K
1200	00045101100	50 v	0012/201	5.5
	&21K859947	510 pF ±5%;		
		500 v		
1350	8D84326A20	.0129 uF ±2%;	65127804	4.7K
	02010-000	50 v		
1500	8D84326A18	.0098 uF ±2%;	65128687	6.8K
	0.00000000000	50 v		
	&21K848236	650 pF ±5%;		
		300 v		
1650	8D84326A17	.00865 uF ±2%;	6S128687	6.8K
		50 v		
1800	8D84326A05	.0073 uF ±3%;	65129225	10K
		50 v		
1950	8D84326A14	.0062 uF ±2%;	6S129225	10K
		50 v		
2100	8D84326A30	.0045 uF ±1%;	6S127805	15K
		50 v		
	&21K873269	820 pF ±2%;		
		300 v		
2250	8D84326A30	.0045 uF ±1%;	6S127805	15K
		50 v		
	&21K840047	150 pF ±5%;		
		500 v		
2400	8D84326A03	.0042 uF ±3%;	6S128904	18K
		50 v		
2350	8D84326A02	.0030 uF ±3%;	6S128685	22K
		50 v		
	&2 lK848236	650 pF ±5%;		
		300 v		
2700	8D84326A02	.0030 uF ±3%;	6S128685	22K
		50 v		
	&21K859942	220 pF ±5%;		
		500 v		
2850	8D84326A02	.0030 uF ±3%;	65128685	22K
		50 v	(
3000	8D84326A01	.0021 uF ±5%;	65127806	27K
		500 v		
	&21K859947	510 pF ±5%;		
2150	000423(403	500 v	(0122002	2.217
3150	8D84326A01	.0021 uF ±5%;	65127807	33K
	1 3 172 0 5 0 1 7 0	50 v		
	&21K859178	270 pF ±5%;		
3300	8D84326A01	300 v .0021 uF ±5%;	65127807	33K
2200	0104520A01	.0021 uF ±5%; 500 v	03121001	2.212
		200 V		

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

٠

TLN4151A Rela	ıy Kit		PL-457-0
К751	80C84201A01	RELAY, armature: 2 form "C"; coil res. ±10%	200 ohms

TLN8774A Panel Kit, Single-Tone Decoder PL-458-O

NON-REFERENCED ITEM			
	45B83914G01	GUIDE RAIL (slide-mount for circuit board); 2 req'd	

NOTE:

Replacement diodes and transistors must be ordered by Motorola part number only for optimum performance.