Base and Repeater Stations

This Manual Must be Used With Control and Applications Manual 68P81025E60

BASE AND REPEATER STATIONS

406-420 MHz 12 W/45 W/75 W 450-470 MHz $2 \mathrm{~W} / 12 \mathrm{~W} / 20 \mathrm{~W} / 45$ W/75 W 470-512 MHz 12 W/20 W/40 W/60 W

CONTENTS

MOTOROLA INC.
Communications Division
SECTION
Optional Mode Jumpering Page 6 Control Line ConnectionsNUMBERPage 7
Control Line Level Adjustment
Page 9
Page 9 Typical Station Layout (rear) Racking, Cabling, and Parts List - Page 13Station Cabinets Dimensional Details and Parts ListPage 16, 17
UPRIGHT OUTDOOR CABINET
68P81033E42
"COMPA-STATION" OUTDOOR CABINET 68P81033E46
"COMPA-STATION METERING \& INTERCOM (EARLIER VERSION) 68P81042E33
UPRIGHT STATION METERING AND INTERCOM 68P81042E57
"COMPA-STATION" METERING AND INTERCOM (LATER VERSION) 68P81033E28
STATION ALIGNMENT 68P81042E53
Introduction Page 1Transmitter Alignment- Page 1Receiver AlignmentPage 5
STATION MAINTENANCE68P81025E92
Introduction Page 1
Local Operation for Testing \& Maintenance - Page 1Maintenance Techniques
Routine Maintenance
Page 3
Recommended Test Equipment Page 3
Transmitter Maintenance- Page 4
Receiver Maintenance Page 4
Page 27
Maintenance Log SheetPage 39
TRANSMITTER
TRANSMITTER INTRODUCTION 68P81042E32
TRANSMITTER INTERCONNECT BOARD (TLN5645A, TLN5647A, TRN6195A) 68P81042E26
EXCITER/1ST BANDPASS FILTER (TLE1720B SERIES) TRIPLERILOW LEVEL AMPLIFIER (TLE1600B SERIES)68P81042E13
Introduction
Page 1
Functional Operation
Page 1
Page 1
Schematic Diagram, Circuit Board Detail, and Parts List. PEPS-18716
POWER AMPLIFIERS
Introduction 68P81042E14
Page 1
12-WATT POWER AMPLIFIER (TLE1680A SERIES) 68P81042E16
20-WATT POWER AMPLIFIER (TLE1690A SERIES) 68P81042E17
40/45-WATT POWER AMPLIFIER, $450-512 \mathrm{MHz}$ (TLE1703A) 68P81042E18
45-WATT POWER AMPLIFIER, $406-420 \mathrm{MHz}$ (TLE1701A) 68P81042E39
60/75-WATT POWER AMPLIFIER $450-512 \mathrm{MHz}$ (TLE1713A, TLE1714A) 68P81042E19
75-WATT POWER AMPLIFIER, $406-420 \mathrm{MHz}$ (TLE1711A) 68P81042E38
POWER CONTROL BOARD (TLN4926A/AV)
Introduction 68P81034E14
Functional Description Page 1
Schematic Diagram, Circuit Board Detail, and Parts List Page 1FEPS-27686
ANTENNA NETWORK, TLE1893B (RPTR STA'S) 68 P8 1044F57
ANTENNA NETWORK, TLE1660B SERIES 68 P8 1044F58
ANTENNA NETWORK, TLE1670B SERIES (RPTR STA'S) 68P81044E37
"PRIVATE-LINE" ENCODER (TLN5731A) 68P81026E71
SIMPLEX "DIGITAL PRIVATE-LINE" ENCODER (TTN6003A) . 68P81028E63
DUPLEX "DIGITAL PRIVATE-LINE" ENCODER (TLN5725A) 68P81028E64
RECEIVER
RECEIVER INTRODUCTION 68P81042E36
Introduction Page 1
RECEIVER INTERCONNECT BOARD 68P81034E07
Description Page 1
"AND-Squelch" Operation.
Page 1
Schematic Diagram, Circuit Board Detail, and Parts List. PEPS-28297
RF \& I-F (BOARD: TLE8030A/B SERIES \& RF DECK TLE8020A SERIES) 68P81042E37
Introduction Page 1
Functional Description Page 2Schematic Diagram, Circuit Board Detail, and Parts List.PEPS-17752
AUDIO \& SQUELCH BOARD (TRN6006A, 7A) 68P81025E79
Description Page 1
Functional Operation
Page 1
Page 1
Schematic Diagram, Circuit Board Detail, and Parts List PEPS-16952
AUDIO POWER AMPLIFIER (TLN4290B) 68P81014E97
Description
Page 1
Page 1
Schematic Diagram, Circuit Board Detail \& Parts List PEPS-28290
TONE "PRIVATE-LINE" DECODER (TRN6002A) 68P81026E73
"DIGITAL PRIVATE-LINE" DECODER (TLN5729A) 68P81026E13
POWER SUPPLIES
POWER SUPPLY (TPN1151A, 52A)68P81033E41
POWER SUPPLY (TPN1110A, B) 68P81020E44

PERFORMANCE SPECIFICATIONS

GENERAL

Frequency Range $\quad 406-420 \mathrm{MHz}, 450-512 \mathrm{MHz}$
No. of Frequencies: Up to 4 frequencies

$\begin{gathered} 406-420 \mathrm{MHz} \\ 450-470 \mathrm{MHz} \\ \text { MODEL } \\ \text { SERIES } \end{gathered}$	CONTINUOUS MINIMUM RF POW ER OUTPUT	POWER INPUT REQUIREMENTS		DC POW ER	
		$\begin{aligned} & \text { STANDBY } \\ & 121 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { TRANSMIT } \\ & 121 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	STANDBY 13.6 V DC	TRANSMIT 13.6 V DC
C24RCB B/C34RCB B/C44RCB (Note 2) B/C54RCB B/C64RCB	$\begin{array}{r} 2 \mathrm{~W} \\ 12 \mathrm{~W} \\ 20 \mathrm{~W} \\ \\ 45 \mathrm{~W} \\ 75 \mathrm{~W} \end{array}$. 85 amp	2. 1 amp 2. 1 amp 2.6 amp 3.8 amp 6. 1 amp	1.5 amp	10.0 amp 10.0 amp 11.0 amp 17.9 amp 27.0 amp
$\begin{gathered} 470-512 \mathrm{MHz} \\ \text { MODEL } \\ \text { SERIES } \end{gathered}$					
B/C34RCB B/C44RCB B/C54RCB B/C64RCB	$\begin{aligned} & 12 \mathrm{~W} \\ & 20 \mathrm{~W} \\ & 40 \mathrm{~W} \\ & 60 \mathrm{~W} \end{aligned}$. 85 amp	$\begin{gathered} \text { NOTE } \\ 1 \end{gathered}$	1.5 amp	$\begin{gathered} \text { NOTE } \\ 1 \end{gathered}$

NOTES:

1. Value same as comparable model above except as reduced to meet E. R. P. requirements.
2. Not available in $406-420 \mathrm{MHz}$ range.

CABINET	DIMENSION (INCHES)	APPROXIMATE SHIPPING WEIGHT (LBS)
31-Inch "Compa-Station" Indoor Cabinet	$22 \mathrm{~W} \times 30-1 / 4 \mathrm{H} \times 10 \mathrm{D}$	150
41 -Inch "Compa-Station" Indoor Cabinet	$22 \mathrm{~W} \times 41 \mathrm{H} \times 10 \mathrm{D}$	190
46 -Inch "Compa-Station" Outdoor Cabinet	$\begin{aligned} & 22 \mathrm{~W} \times 46 \mathrm{H} \times 20 \mathrm{D} \\ & \text { (including Rain Shields) } \end{aligned}$	180
60-Inch "Compa-Station" Indoor Cabinet	$22 \mathrm{~W} \times 60 \mathrm{H} \times 20 \mathrm{D}$	220
70 -Inch Upright Indoor Cabinet	2l-3/4 W x 70 Hx 19-1/4 D	280
75-Inch Upright Cabinet	$\begin{aligned} & 23-3 / 4 \mathrm{~W} \times 74-5 / 8 \mathrm{H} \times 25-1 / 4 \mathrm{D} \\ & \text { (including Rain Shields) } \end{aligned}$	365
Metering	Optional internal mounted meter used to measure all essential circuits for tuning and checking.	
	A single scale, $0-50$ microampere meter with 2,000 ohms equivalent series resistance or Motorola portable test set can be used to measure all circuits essential to tuning and checking.	
	"B" models include DC metering and intercom as standard equipment.	

PERFORMANCE SPECIFICATIONS (Cont'd.)
TRANSMITTER

RF POWER OUTPUT	$\begin{aligned} & 406-420 \mathrm{MHz} \\ & 450-470 \mathrm{MHz} \\ & 470-5 \mathrm{MHz} \end{aligned}$	$\left\|\begin{array}{c} 12 \mathrm{~W} \\ 2 \mathrm{~W} / 12 \mathrm{~W} \\ 12 \mathrm{~W} \end{array}\right\|$	$\begin{gathered} \text { NOTE } 2 \\ 20 \mathrm{~W} \\ 20 \mathrm{~W} \end{gathered}$	$\begin{aligned} & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \\ & 40 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 75 \mathrm{~W} \\ & 75 \mathrm{~W} \\ & 60 \mathrm{~W} \end{aligned}$
OUTPUT IMPEDANCE			50 ohms		
OSCILLATOR FREQU ENCY STABILITY			Channel element maintains oscillator frequency within $\pm 0.0002 \%$ from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ambient ($+25^{\circ} \mathrm{C}$ reference)		
TRANSMITTER SIDE BAND NOISE			$\begin{aligned} & 85 \mathrm{~dB} @ \pm 25 \mathrm{kHz} \\ & 100 \mathrm{~dB} @ \pm 1 \mathrm{MHz} \end{aligned}$		
SPURIOUS \& HARMONICS (CONDUCTED)			More than 85 dB below carrier		
MODULATION			15 F 2 and 16F3: $\pm 5 \mathrm{kHz}$ for 100% at 1000 Hz		
AUDIO SENSITIVITY			Local: 0.120 volt $\pm 3 \mathrm{~dB}$ for 60% maximum deviation at 1000 Hz . Remote Telephone Line: -20 dBm max. for 60% maximum deviation at 1000 Hz		
FM NOISE			55 dB below 60% system deviation at 1000 Hz		
AUDIO RESPONSE			$+1,-3 \mathrm{~dB}$ from $6 \mathrm{~dB} /$ octave pre-emphasis, $300-$ 3000 Hz , referenced to 1000 Hz		
AUDIO DISTORTION			Less than 2% at $1000 \mathrm{~Hz} ; 60 \%$ system deviation		

"SENSITRON" RECEIVER

CHANNEL SPACING	25 kHz	
EIA MODULATION ACCEPTANCE	$\pm 7 \mathrm{kHz}$ minimum	
FREQUENCY STABILITY	AFC channel element maintains receiver frequency within $\pm 0.0002 \%$ of reference frequency from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ambient temperature $\left(+25^{\circ} \mathrm{C}\right.$ reference).	
INPUT IMPEDANCE	50 ohms	
$\text { SENSITIVITY } \begin{aligned} & 20 \\ & \text { QUIET - } \\ & \text { QUG } \\ & \text { ING } \end{aligned}$	$\frac{\text { NO PREAMPLIFIER }}{0.5 \mathrm{uV}}$	$\frac{\text { WITH PR EAMP LIFIER }}{0.25 \mathrm{uV}}$
$\begin{aligned} & \text { EIA } \\ & \text { SINAD } \\ & \hline \end{aligned}$	0.35 uV	0.175 uV
$\begin{aligned} & \text { SELECTIVITY } \\ & \text { (EIA SINAD) } \end{aligned}$	-90 dB @ $\pm 25 \mathrm{kHz}$	
EIA SINAD INTERMODULATION	-85 dB	$-80 \mathrm{~dB}$
SPURIOUS AND IMAGE REJECTION	100 dB minimum	
SQUELCH SENSITIVITY CARRIER SQUELCH (adjustable)	. 25 uV or less at threshold	. 125 uV or less at threshold
TONE-CODED SQUELCH	. 25 uV or less	. 125 uV or less
DIGITAL-CODED SQUELCH	. 25 uV or less	. 125 uV or less

PERFORMANCE SPECIFICATIONS (Cont'd.)

AUDIO (TELEPHONE LINE)	OUTPUT	+18 dBm at 600 ohms
	RESPONSE	$+1,-3 \mathrm{~dB}$
	DISTORTION	3% at 1000 Hz
	HUM \& NOISE	-55 dB
	LOCAL	10 watts at 8 ohms output available

FCC LICENSE DESIGNATION

Transmitter			
MODEL	450-470 MHz	470-494 MHz	494-512 MHz
B/C 64 Series 75 Watt 60 Watt	CC4224C ---	$\mathrm{CC} 4224 \mathrm{C}-1$	$\mathrm{CC} 4224 \mathrm{C}-2$
B/C 54 Series 45 Watt 40 Watt	CC4223C	CC4223C-1	$\stackrel{---}{C C 4223 C-2}$
B/C 44 Series 20 Watt	CC4222C	CC4222C-1	CC4222C-2
\qquad	CC4221C CC 4262 C	CC4221C-1	CC4221C-2
Receiver			
Non-Shifted LF w/o Preampl Non-Shifted IF w Preampl		R C0080	
		R C0081	
Shifted LF w/o Preampl		RC0082	
Shifted IF w Preampl		R C0083	

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE
2.W MODELS

12.W EARLIER VERSION MODELS

THE "B" UPRIGHT STATION MODELSTE ARE THE SAME AS THE "C"
"COMPA-STATION" MODELS WITH OPTION C40 CHANGES AS FOLLOWS:

THN6194B 70 -INCH CABINET
TLNN1739A METERING CHA SSIS
TLNT134A METER PANEL
TLNN173A ME MERING CHA SSIS
TLNT14AA METER PANEL
TRN1090A CABIIET HARDWARE KIT
TLN5264A POWER JUNCTION BOX

12-W LATER VERSION MODELS


```
OMIT - THN6142A 41-TNCH CABINET
    TLN173AA METERINAGCASTSSIS
    M,
```

 "Cl" "COMPA-S

 TLIN5 134 A METER PANEL
TRN100A CABINET HARDWARE KIT

COMMPA-STA TION" MODELS WITH OPTION C40 CHANGES AS FOLLOWS:

FACTORY-INSTALLED OPTIONS

| OPTION PLAN |
| :--- | :--- | :--- | :--- | :--- |
| NUMBER OR |
| CPPTIONAL KIT |
| NUMR ER |\quad DESCRIPTION \quad| PUBLICATION REFERENCE |
| :--- |

DC REMOTE CONTROL STATION OPTIONS

C63	TLN4637A Paging Module	None	68P81025E60
Cl43	TLN4664A Repeater Contro1 Module	None	68 P 81025 E 60

TONE REMOTE CONTROL STATION OPTIONS

C56	TLN4667A F2-R2 Mute Control Module	None	68P81025E60
C63	TLN1253A Paging Control Module	None	68P81025E60
T LN 1249A	Squelch Control Module	None	68P81025E60
TLN1250A	Repeater Control Module	None	68P81025E60
TLN1251A	"PL" Control Module	None	68P81025E60
TLN1252A	"Wild Card" Module (See Note 3)	None	68P81025E60
C170	Guard Tone Keying	None	68P81025E60

OPTIONS APPLICABLE TO BOTH DC AND TONE REMOTE CONTROL STATIONS

Cl2	TLE8191A/2A RF Preamplifier	Receiver RF \& IF	None
C31	Transmit Only Station (Delete Receiver)	None	None
Cl40	AND Squelch Control	Receiver Interconnect Unit	None
Cl44	TLN4668A 4-Wire Audio (1-Rcvr)	None	68P81025E60
C 144 AB	TLN4668A 4-Wire Audio (2-Rcvr)	None	68P81025E60
C145	TLN1460A TAC Encoder (See Note 5)	None	68P81104E73
C150	Base (RA) Operation	None	68P81105E08
C158	Multiple PL Transmit	None	68P81106E30
C261	Multiple PL Receive	None	68P81106E30
C262	Multiple PL Repeat	None	68 P 81106 E 30
C263	Multiple PL Transmit \& Receive	None	68P81106E30
TLN1181A	Single-Tone Decoder Module	None	68P81025E60
T LN4636A	Time-Out Timer Module (See Note 6)	None	68P81025E60
TLN1740A	DC Metering W/Monitor Intercom (Note 7)	None	None
TLNI745A	Service Intercom W/Speaker (Notes 7 and 8)	None	None
Cl60	Repeater (RA) Operation	None	68P81105 E08
C27	46-inch Outdoor Cabinet	Installation	None
C180	$60-$ inch Indoor Cabinet	Installation	None
C36	75-inch Outdoor Cabinet	Installation	None
C38	$\begin{aligned} & 120 / 220 / 240-\text { Volt AC } 50 / 60 \mathrm{~Hz} \\ & \text { Power Supply } \end{aligned}$	None	68P81104E92
C28	120-Volt AC/12-Volt DC Power Supply	None	68P81104E92
C29	Battery Saver/Alarm	None	68P81104E92
C181, 182, 183	Duplexer	None	68P81102E96
C75	Omit Time-Out Timer Module	None	None
TLN4151A	Relay Kit	None	68P81025E60

NOTES:
I. The options listed are not necessarily compatible with each other or with each type of station. Consult your Motorola representative for compatibility details.
2. Other options may become available after the printing of this instruction manual. Consult your Motorola representative for a complete listing of the current options available for your station.
3. One to four TLN4I5IA Relay Kits may be used with this option to provide one to four form "C" contact closures for operation of external equipment.
4. One TLN415lA Relay Kit may be used with this option to provide a form "C" contact closure for operation of external equipment.
5. This option also replaces the TLN4669A 2-Wire Audio with the TLN4668A 4-Wire Audio.
6. Option to base stations; supplied with repeater stations.
7. Option to "Compa-Station" Radios only.
8. TLNI745A Service Intercom Kit is identical to TLNI740A DC Metering W/Monitor Intercom Kit but less dc metering feature.

FACTORY-INSTALLED OPTIONS

OPTION PLAN NUMBER OF OPTIONAL KIT NUMBER	DESCRIPTION	PUBLICATION REFERENCE	
		APPLICABLE SECTION WITHIN THIS MANUAL	$\begin{array}{\|l} \hline \text { PART NUMBER } \\ \text { OF SEPARATE } \\ \text { PUBLICATION } \end{array}$
DC REMOTE CONTROL STATION OPTIONS			
C63	TLN4637A Paging Module	None	68P81025E60
C143	TLN4664A Repeater Control Module	None	68P81025E60
C56 TONE REMOTE CONTROL STATION OPTIONS			
	TLN4667A F2-R2 Mute Control Module	None	68P81025E60
	TLN1253A Paging Control Module	None	68P81025E60
$\begin{array}{\|l\|} \hline \text { TLN1249A } \\ \text { OR } \\ \text { TLN1250A } \\ \text { OR } \\ \text { TLN1251A } \\ \hline \end{array}$	Squelch Control Module	None	68P81025E60
	Repeater Control Module	None	68P81025E60
	PL Control Module	None	68P81025E60
TLN1252A	"Wild Card" Module (See Note 3)	None	68P81025E60
C170	Guard Tone Keying	None	68P81025E60
OPTIONS APPLICABLE TO BOTH DC AND TONE REMOTE CONTROL STATIONS			
C12	TLE8191A/2A RF Preamplifier	Receiver RF \& IF	None
C31	Transmit Only Station (Delete Receiver)	None	None
C140	AND Squelch Control	Receiver Interconnect Unit	None
Cl44 OR Cl 44AB	TLN4668A 4-Wire Audio (1-Rcvr)	None	68P81025E60
	TLN4668A 4-Wire Audio (2-Rcvr)	None	68P81025E60
C145	TLN 1460 A TAC Encoder (See Note 5)	None	68P81104E73
C150	Base (RA) Operation	None	68P81105E08
C158	Multiple PL Transmit	None	68P81106E30
C261	Multiple PL Receive	None	68P81106E30
C262	Multiple PL Repeat	None	68P81106E30
C263	Multiple PL Transmit \& Receive	None	68P81106E30
TLN1181A	Single-Tone Decoder Module	None	68P81025E60
TLN4636A	Time-Out Timer Module (See Note 6)	None	68P81025E60
Cl49	DC Metering W/Monitor Intercom (Note 7)	Station Data	None
C226	Service Intercom W/Speaker (Notes 7 and 8)	None	None
C160	Repeater (RA) Operation	None	68P81105E08
C27	46 -Inch Outdoor Cabinet	Installation	None
C180	60-Inch Indoor Cabinet	Installation	None
C36	75-Inch Outdoor Cabinet	Installation	None
C38	$120 / 220 / 240$-Volt AC $50 / 60 \mathrm{~Hz}$ Power Supply	None	68P81104E92
C28	120-Volt AC/12-Volt DC Power Supply	None	68P81104E92
C181, 182,183	Duplexer	None	68P81104E92
C75	Omit Time-Out Timer Module	None	None
TLN4151A	Relay Kit	None	68P81025E60
C269	SPECTRA TAC (See Notes 9 \& 10)	None	68P81107E40
C40	Indoor Upright Cabinet includes Metering and Intercom	Station Data	None

NOTES:

1. The options listed are not necessarily compatible with each other or with each type of station. Consult your Motorola representative for compatibility details.
2. Other options may become available after the printing of this instruction manual. Consult your Motorola representative for a complete listing of the currentoptions available for your station.
3. One to four TLN4151A Relay Kits may be used with this option to provide one to four form "C" contact closures for operation of external equipment.
4. One TLN4151A Relay Kit may be used with this option to provide a form "C" contact closure for operation of external equipment.
5. This option also replaces the TLN4669A 2-Wire Audio with the TLN4668A 4-Wire Audio.
6. Option to base stations; supplied with repeater stations.
7. Option to "Compa-Station" Radios only.
8. C226 Service Intercom Kit is identical to C149 DC Metering W/Monitor Intercom Kit but less dc metering feature.
9. Applicable on single receiver models only.
10. This option replaces the TLN4669B Line Driver with a TRN6552A Line Driver, and adds a TRN6085A Encoder Module and TRN6103A Miscellaneous Hardware Kit. On RT repeater models, the Squelch Gate Module TLN4662A is replaced with a TRN6689A Squelch Gate Module.

STATION DATA

Description 68P81025E89
Installation 68P81025E91
Upright Outdoor Cabinet 68P81033E42
"Compa-Station" Outdoor Cabinet 68P81033E46
"Comps-Station" Metering and Intercom (Early Version) 68P81042E33
Upright-Station 68P81042E57
"Compa-Station" Metering and Intercom (Later Version) 68P81033E28
Station Alignment 68P81042E53
Station Maintenance 68P81025E92
TRANSMITTER
Transmitter Introduction 68P81042E32
Transmitter Interconnect Board 68P81042E26
Exciter/1st Bandpass Filter Tripler/Low Level Amplifier 68P81042E13
Power Amplifiers (Introduction) 68P81042E14
12. Watt Power Amplifier 68P81042E16
20-Watt Power Amplifier 68P81042E17
40/45 Watt Power Amplifier ($450-512 \mathrm{MHz}$) 68P81042E18
45-Watt Power Amplifier ($406-420 \mathrm{MHz}$) 68P81042E39
$60 / 75$ Watt Power Amplifier ($450-512 \mathrm{MHz}$) 68P81042E19
75-Watt Power Amplifier 68P81042E38
Power Control Board 68P81034E14
Antenna Network 68P81042E27
"PRIVATE-LINE" Encoder. 68P81026E71
Simplex "DITITAL PRIVATE-LINE" Encoder 68P81028E63
Duplex "DIGITAL PRIVATE-LINE" Encoder 68P81028E64
RECEIVER
Receiver Introduction 68P81042E36
Receiver Interconnect Board 68P81034E07
Receiver RF \& I-F Board 68P81042E37
Receiver Audio \& Squelch Board 68P81025E79
Audio Power Amplifier 68P81014E97
"PRIVATE-LINE" Decoder 68P81026E73
"DIGITAL PRIVATE-LINE" Decoder 68P81026E13
POWER SUPPLIES
Power Supply 68P81033E41
Power Supply 68P81020E44

1. MANUAL USAGE

This manual describes all aspects of 406420 MHz and $450-470 \mathrm{MHz}$ "Micor" type Upright and "Compa-Station" radios except remote control and station applications. Separate CONTROL and APPLICATIONS manual 68P81025E60 describes how these stations are remotely controlled and outlines the various types of base and repeater stations and their applications.

2. EQUIPMENT DESCRIPTION INTRODUCTION

2. 1 These Motorola "Micor" type base and repeater (RT) stations operate in the $406-420 \mathrm{MHz}$ and $450-512 \mathrm{MHz}$ range and are
available in two basic model configurations --"Compa-Station" models and Upright models. Basic electrical characteristics of both are identical; the primary differences being that the upright models include a larger cabinet with hinged doors (front and back) and built-in metering with monitor intercom. "Compa-Station" models are shorter, incorporate non-hinged doors, and built-in metering with monitor intercom is available as an option. ("Compa-Station" metering is unique from upright station metering.)
2.2 Many models are available as shown in the station model chart at the front of this manual which designates equipment operational differences. These differences include transmitter rf power output level, type of receiver squelch, number of operating frequencies, type of remote control, etc.
motorola inc. Communications Division

3. TRANSMITTER

The transmitter generates a frequency modulated rf carrier signal of various power output levels depending upon the model. Refer to the following station block diagram for functional operation. The transmitter consists of the following items:

NOTE

Stations in the $470-512 \mathrm{MHz}$ band are FCC-licensed to operate at or below a specified effective radiated power (ERP). The ERP of the station is related to the rf power output of the transmitter, antenna transmission line loss, antenna height and antenna gain. The maximum rf power output of the transmitter that will be permitted, without violating the licensed ERP for each specific station, must be determined by a communications specialist. This rf power figure may be equal to or below the maximum capability of the station. Record the figure for reference in future servicing and alignment of the station.
--Channel Element - An unheated, tempera-ture-compensated crystal oscillator plug-in module (channel element) provides a stable fundamental rf frequency for the transmitter. One channel element is used for each transmitter frequency.
--Exciter - The exciter provides the low power excitation signal for the transmitter. An 'IDC" (Instantaneous Deviation Control) circuit amplifies and limits audio signals from the microphohe"(or line) to prevent over deviation. Amplified audio is applied to the channel element to produce direct fm modulation. Multipliers in the exciter multiply the channel element frequency 12 times to generate an output frequency signal(s) in the 135 to 171 MHz band.
--First Bandpass Filter - The first bandpass filter couples $135-171 \mathrm{MHz}$ signals from the exciter to the tripler/low level amplifier and attenuates any harmonics outside this band.
--Tripler/Low Level Amplifier - Exciter output frequency is tripled in this stage and amplified to drive the following power amplifier.
--Second Bandpass Filter - This filter is located electrically between the tripler and low level amplifier. This filter couples $406-512 \mathrm{MHz}$ signals from the tripler to the low level amplifier and attenuates any harmonics outside this band.
--Power Amplifier - The low power output of the tripler/ low level amplifier is amplified to the rated power output of the transmitter in this solid-state power amplifier. Class C amplifiers are used which are cut off until signal drive is applied. A controlled amplifier stage regulates the amount of signal drive to prevent over dissipation in the final amplifier stages. An input from the power control board controls the amount of gain.
--Power Control Board - The power control board automatically and instantaneously regulates the transmitter output power. It maintains output power should source voltage vary, and progressively reduces power when VSWR increase. The output of the board is applied to the controlled amplifier stage in the power amplifier to regulate the amount of gain.

4. RECEIVER

4. 1 The receiver accepts rf carrier signals on a specific channel in the $406-512 \mathrm{MHz}$ range and provides voice audio in the $300-3000 \mathrm{~Hz}$ range. Refer to the station block diagram for functional operation. The receiver consists of the following items:

--Channel Element - A plug-in crystal oscillator module (channel element) provides stable frequency control for each frequency of operation. One channel element is required for each receiver frequency.
--Receiver RF \& IF Board - The singleconversion superheterodyne FM receiver includes a preselector (comprised of six cavities) and two crystal filters for excellent selectivity. Two integrated circuit i-f amplifiers and limiters give high sensitivity. A crystal discriminator demodulates the audio directly from an 11.7 MHzi -f signal. (Some 2-receiver stations may have a "shifted i-f" to 11.8 MHz when required.) Art AFC voltage is derived from the discriminator circuit which is used to correct the channel element frequency to provide an overall receiver stability of $\pm 0.0002 \%$.
--Audio \& Squelch and Audio Power Amplifier Boards - Up to 10 watts of audio power at less than 5% distortion is provided by this circuit. When no messages are being received, the squelch circuit turns off the audio amplifiers to eliminate annoying noise in the speaker. A squelch tail eliminator circuit prevents the noise burst at the end of a message for strong signals. For weak signals, the circuit is automatically inhibited to prevent loss of portions of messages. The audio power amplifier transistors are mounted on a separate circuit board and aluminum heat sink for good heat dissipation.

4.2 With 2-receiver stations, a 2-receiver

 coupler is used. This unit permits two receivers to operate from the same antenna. The coupler has a maximum insertion loss of 4 dB to each receiver.4.3 An optional receiver rf preamplifier is also available to improve receiver sensitivity (SINAD) by 6 dB to .175 microvolt. When used with 2 -receiver stations, this more than makes up for the half power loss in each "leg" of the 2 -receiver coupler.

5. POWER SUPPLY

The power supply utilizes a ferro-resonant (constant voltage) transformer and provides all the voltages necessary for operating the station. It automatically corrects for changes in load and input voltage thus maintaining a constant voltage output.

6. VOLUME AND SQUELCH CONTROLS

Receiver VOLUME and SQUELCH controls are located on the receiver chassis (all other operational circuit and their controls are on plug-in modules inserted into the unified control chassis). The RECEIVER VOLUME control only affects local speaker operation (when used).

NOTE

The SQUELCH control affects local and remote operation.

7. "PRIVATE-LINE" TONE-CODED SGuclcti ofétaticin

7. 1 This type of operation permits private communications on crowded radio communication channels. Several "Private-Line" (PL) networks can use the same rf carrier frequency in the same area if each network uses a different PL tone frequency. The PL tones are in the $67-210 \mathrm{~Hz}$ range, which is below the $300-$ 3000 Hz voice frequency range used in radio communication equipment.

7.2 The transmitters are modulated by a

 continuous sub-audible PL tone in addition to the voice modulation. The tone is generated by a PL encoder, which is a plug-in circuit board in the transmitter. The receivers accept only signals that are modulated with the specific PL tone frequency. Signals without the tone or with a different tone are not heard. Thus, only messages from your own PL network are. heard. A PL decoder, which is also a plug-in circuit board in the receiver, disables the audio circuits of the receiver until the proper tone is received. A filter blocks the tone from the speaker so that it will not be heard.7. 3 In PL radio systems, the operator will not hear all on-frequency signals until
he PL disables the receiver. The PL decoder is bypassed and the receiver reverts to carrier noise type squelch control. It is necessary to monitor the channel before transmitting to avoid interfering with other users.

NCTE
The Motorola Order Processing Group assigns the PL tone frequencies to prevent duplicate or interfering tones from being used in the same area. Consult them before changing tones or adding new ones.

8. "DIGITAL PRIVATE-LINE" BINARYCODED SQUELCH OPERATION

This type of operation is similar to "Private-. Line" tone-coded squelch operation but with greatly expanded code capability. Refer to separate Instruction Section 68P81106E83 for complete details.

9. ACCESSORIES

In addition to the base and repeater stations described in this manual, some additional items are needed to complete the installation as follows:

9.1 ANTENNA AND TRANSMISSION LINE

An antenna and transmission line kit is available from Motorola on separate order. The type used should be determined by a qualified radio communications engineer and will depend upon local operating conditions.

9. 2 REMOTE CONTROL CONSOLE

A remote control console is required at the control location for this station. It must be compatible with the station; that is, it must supply the audio and control commands of the type that will be accepted by the station.

9.3 OPTIONAL ACCESSORIES

Many optional accessories are available as factory installed items in new stations, and as "add-to" items for field installation. Many of those optional accessories are described in this manual. Other accessories may become available after the printing of this manual. Also, other accessories are available which have more special application than those listed herein. See your local Motorola representative and the following Factory-Installed Options list for complete details.

IMPORTANT

FCC regulations state that:

1. Radio transmitters may be tuned or adjusted only by persons holding a lst or 2 nd class commercial radiotelephone operator's license or by personnel working under their immediate supervision.
2. The rf power output of a radio transmitter shall be no more than that required for satisfactory technical operation considering the area to be covered and local conditions.
3. Frequency, deviation and power of a base station transmitter must be checked before it is placed in service and rechecked every year thereafter.

REMEMBER

The efficiency of the equipment depends upon a good installation.

1. INSPECTION

Inspect the equipment thoroughly as soon as possible after delivery. If any part of the equipment has been damaged in transit, report the extent of damage to the transportation company immediately.

2. PLANNING THE INSTALLATION

Since a good installation is so important to obtain the best possible performance of the communications system, carefully plan the installation before actual work is started. Location of the station in relation to power, control lines, the antenna, convenience and access for servicing should be considered. The cabinet dimensional detail diagrams show the size of the various cabinets for planning the space requirements. Read the entire procedure and the many suggestions offered to help you plan your installation. Make sure all tools, equipment and facilities are available when the installation is begun.

3. VENTILATION

The radio equipment is operated without forced ventilation. The cabinets have vents which allow outsideair to bedrawnin through an opening in the bottom of the doors and expelled through an opening in the top of the doors. The heatedair rising in the cabinet causes a natural draft. Therefore, it is essential that the openings be kept free of obstructions so the air.flow will not be restricted. The vents on outdoor type cabinets provide necessary station ventilation and in addition prevent rain, snow, etc. from entering the cabinet.
4. INSTALLATION OF 30-, 41-, AND 60INCH INDOOR "COMPA-STATION" CABINETS
4. I Refer to cabinet drawings at the end of this section for cabinet dimensional details.
4.2 The cabinet should be located on a solid, level surface convenient to the power
source and the transmission line. The transmission line should be kept as short as possible to minimize line losses.

4.3 All antenna, power and control lines may

 be brought through the notch at the bottom of the rear door. Any or all of these lines may be brought out through the bottom, side or top of the cabinet, if desired, by drilling a hole in the cabinet at the desired position.
CAUTION

Before drilling, check location of proposed hole and verify that equipment will not be damaged by the drilling.

5. INSTALLATION OF 7O-INCH INDOOR UPRIGHT STATION CABINET

5.1 GENERAL

Refer to cabinet drawings at the end of this section for the cabinet dimensional detail. The cabinet should be located on a solid, level surface convenient to the power source and the transmission line. The transmission line should be kept as short as possible to minimize line loss.

5.1 REMOVAL AND REVERSING OF DOORS

Both front and rear doors are removable by simply unhooking the arm of the door stop from the door and pulling down on the upper hinge pin. If desired, both front and rear doors may be reversed from right hand opening to left hand opening as follows:

Step 1. Remove the door and unbolt the hinge brackets from the cabinet.

Step 2. Remount these hinge brackets on the opposite side of the cabinet.

Step 3. Turn the door upside down and reinsert the hinge pins in the brackets.

Step 4. Remove the latch bar from the rear of the door lock and reinstall it 180° from its original position.

5.3 REMOVAL OF SIDE PANELS

The sides of the cabinet may be easily removed to aid in the installation or maintenance of the unit. Proceed as follows:

Step 1. Using a nut driver tool, remove the sheet metal screw located in the middle or the lower edge of the side panel, as viewed from inside the cabinet.

Step 2. Insert a large screwdriver between the lower edge of the side panel and the bright trim strip on the outside of the cabinet and pry up slightly to release the friction grips.

Step 3. Grasp the side panel at the edges with both hands and lift up several inches to remove it.

5.. 4 REPLACEMENT OF SIDE PANELS

Step l. When replacing the side panel, position it over the frame with the top several inches above the top of the cabinet.

Step 2. Slowly slide the side panel down into position. When the top of the side panel is flush with the top of the cabinet, the panel is positioned properly.

Step 3. The locking screw should be replaced for security reasons.

6. INSTALLATION OF 46- AND 75-INCH "OUTDOOR" CABINETS

F. 1 GENERAL

6.1.1 Refer to cabinet drawings at the end of this section for cabinet dimensional de-
tails.
6.1.2 The outdoor station may be installed in any convenient location (indoors or outdoors) which provides space to open the front and rear doors. If it is installed outdoors, the rain shield kit (whichis packedwith the cabinet) should be installed as described in this section. With these installed, the station is protected against all normally encountered elements such as rain, snow or sleet.
6.1.3 The station is not intended to withstand submersion in water. If pools of water could gather around the cabinet base, it is recommended that the cabinet be elevated on a suitable supporter platform.
6.1.4 Although the cabinet is built to be installed outdoors, it should be realized that maintenance of the station is not easily
accomplished in inclement weather. It is therefore recommended that the station be installed inside of an enclosure which would provide protection for the serviceman and the test equipment he may be using. One such enclosure would be an elevator penthouse or a small building no less than six feet square and eight feet tall as measured on the inside.
$\therefore \quad 6.1 .5$
The cabinet should be located on a solid, level surface convenient to the power source and the transmission line. The transmission line should be kept as short as possible to minimize line losses.

6.2 46-INCH CABINET RAIN SHIELD INSTALLATION

6.2.1 General

The rain shield kit is provided to cover the air vent openings at the top and bottom of both cabinet doors.

6.2.2 Procedure

The complete rain shield installation procedure is given in step form on the 46 -inch outdoor cabinet dimensional detail at the end of this section.

6.3 75-INCH CABINET RAIN HOOD AND VENT SHIELD INSTALLATION

6.3.1 General

The rain hood is provided to cover the air vent in the top of the cabinet and the vent shield to cover the opening in the rear door.

6.3.2 Installation of Rain Hood

Step 1. Install the main section (largest fabricated assembly) over the opening in the top of the cabinet using the rectangular shaped gasket and $1 / 2$-inch sheet metal screws provided.

Step 2. Mount the small rectangular cover inside the main section using the machine screws provided.

Step 3. Similarly, mount the larger cover on top of the whole assembly.

6.3.3 Installation of Vent Shield

Mount the awning-shaped vent shield over the opening in the rear door using the "U" shaped gasket and $3 / 8$-inch sheet metal screws. Place the acorn nuts over the screws to cover exposed threads.

7. ANTENNA CONNECTIONS

7. 1 INTRODUCTION

7.1.1 The antennas and transmission lines are not part of the station. Therefore, antenna installation instructions are notincluded in this section. Follow the instructions shipped with the antennas for applicable information.
7.1.2 In its primary application, the station is used for communications with mobile radios. Thus antennas having omni-directional characteristics are desirable. However, if the station is located at the outer perimeter of a communications area, or if it is to be used for communications with fixed stations, antennas with specific directional characteristics may be more suitable. FCC requirements may also dictate the type of antenna to be used.
7.1.3 For base stations, the antenna's coaxial cable connects to the antenna network output with a type N connector. For repeater stations without an optional duplexer, two antennas are required, one for the transmitter and one for the receiver. The antenna coaxial cables connect directly to the transmitter and receiver. The transmitter output requires a type N connector at the antenna network output-the receiver input requires a type BNC connector. For repeater stations with an optional factory installed duplexer, the antenna's coaxial cable connects to the duplexer with a type UHF connector. (Refer to Figure l.)

7.2 31-, 41-, AND 60-INCH INDOOR CABINET ANTENNA CABLE ROUTING AND CONNECTION

Step 1. The antenna coaxial cable(s) may be brought through the notch at the bottom of the

FAEPS-17625-0
Figure 1.
Antenna Connection Locations
rear door. Cable(s) may be brought out through the bottom, side or top of the cabinet, ifdesired, by drilling a hole in the cabinet at the desired position.

CAUTION

Be careful to determine internal clearance before drilling access holes. A 3/4-inch diameter hole allows conduit to be installed for cable runs. If conduit is not used, install rubber grommets in the holes to protect the cable(s).

Step 2. Connect the antenna cable(s) as shown in Figure 1 and discussed in paragraph 7.1.3.

7. $3 \quad 46-\mathrm{INCH}$ OUTDOOR CABINET ANT ENNA CABLE ROUTING AND CONNECTION

This outdoor cabinet antenna cable routing and connection procedure is the same as described for indoor type cabinets except the entrance must be sealed and made as weatherproof as possible.

7. 4 70-INCH INDOOR CABINET ANTENNA CABLE ROUTING AND CONNE:CTION

7.4.1

General

Six knockouts in three sizes are provided on the cabinet top for ease of installation. Refer to Figure 2 Cabinet Knockout Detail for proper hole usage and to Figure 3 Indoor Cabinet Antenna Cable Installation Diagram for typical installation details. Determine the type of cable entry or entries required as described in paragraph 7.1.3 and select the most convenient knockout(s). The coaxial output lead must be kept as short as possible to keep power loss to a minimum.

$$
7.4 .2
$$

Transmission Lincs Terminated in Female Connector

Step 1. Secure the transmission line (through the appropriate knockout) directly to the cabinet top with the nut supplied.

Figure 3.
Indoor Cabinet Antenna Cable Installation
Step 2. Measure and cut a piece of coaxial cable so that it will reach between the station output connector and the transmission line connector in the cabinet top.

Step 3. Install connectors as required.

7.4 .3
 Transmission Lines Terminated in Flange Type Connector

Step 1. Install the flange type connector in the cabinet top using the appropriate knockout.

Step 2. Measure and cut a piece of coaxial cable so that it will reach between the station output connector and the flange type connector in the cabinet top without any sharp bends.

Step 3. Install connectors as required.

7.4.4 Externally Terminated Transmission Line

The transmission line may be terminated adjacent to the cabinet, but must be within reach of the coaxial cable that connects to the radio equipment.

Step 1. Punch out the 7/8-inch knockout in the cabinet top.

Step 2. Install the rubber grommet (supplied) in the hole.

Step 3. Install a coaxial jumper cable of sufficient length to provide proper connection.

7.5 75-INCH OUTDOOR CABINET ANTENNA CABLE ROUTING AND CONNECTION

Step 1. A flange-type bulkhead fitting should be used to make a weatherproof entry for the antenna transmission line(s). The recommended location for the fitting is on the right side of the cabinet (as viewed from the front) with its center 21 inches from the top and 7 inches from the rear. Any alternate location must be selected with caution to insure that the area is clear of chassis, framework, etc.

Step 2. Install connectors as required.

8. AC INPUT POWER CONNECTIONS

8. 1 INTRODUCTION

8.1.1 All stations should have a separate power circuit from a 10 -ampere (minimum), 120 -volt ac, 60 Hz power source. The power lines should be installed in accordance with local electrical codes.

[^0]cabinet and terminated near the location chosen for the station.

8. 2 31-, 41-, 60-INCH INDOOR/46-INCH OUTDOOR CABINETS POWER CONNECTION

8.2.1 Indoor and outdoor power connections are identical except that outdoor station requires additional weatherproofing.

WARNING

If a three wire grounded primary ac power source is not available the radio equipment must be grounded separately to prevent electrical shock hazards and provide lightning protection.
8.2.2 Connect the three-wire ac line cord to the ac outlet. A power on-off switch is not provided in the equipment, therefore, with power applied, the equipment is in an operative condition.

8.2.3 The station fuse controls all power

 to the station except ac power to the outlet in the power supply.
8. 3 70-INCH INDOOR CABINET POWER CONNECTION

8.3.1 If the station is located in a room with a utility trough in the floor, the station may be installed over the trough and the power and control leads brought up through the bottom of the cabinet into the station. Do not punch out the knockouts for such an installation.

8.3.2 Two knockouts are also provided on

 the rear panel of the cabinet base for rear entrance of the power and control lines. When facing the rear of the cabinet, the right hand knockout is intended for the entrance of ac power. Punch out the knockout. Install a 7/8-inch rubber grommet (supplied) in the hole to protect the cable.
8. $4 \quad 75$-INCH OUTDOOR CABINET POWER CONNECTIONS

8.4.1 For bottom cable entry, power and control cables may be brought in at almost any desired point through the bottom of the cabinet. Measure and center punch the desired cable entry locations. Using the center punch marks as the center of the holes, drill $3 / 4$-inch holes with a hold saw. Install rubber
grommets in the holes to protect the cables. Seal the entry to make the opening as weatherproof as possible.

8.4 .2
 For rear cable entry, two punch marks are located on the rear panel

 of the cabinet base. Using these as centers, drill holes in the cabinet with a $3 / 4$-inch hole saw. When facing the rear, the right-hand hole is intended for the entrance of ac power and the left-hand hole is intended for the entrance of control lines. Install rubber grommets in the holes to protect the cables. Seal the entry to make the opening as weatherproof as possible.
9. OPTIONAL MODE JUMPERING

9.1 GENERAL

9.1.1 Many station modes of operation are determined by jumper connections at the time of installation and are described in the following paragraphs.
9.1.2 Additional jumpers used with the station are identified and described in applicable sections elsewhere within this instruction manual.

9.2 TIME-OUT TIMER MODULE

Base stations or repeaters equippedwith a time-out-timer module prevent unintentional continuous transmission. The timing jumpers on the module may be connected for $1 / 2,1,2,4$ or 8 minute operation. In repeaters, the time-out-timer will reset each time a new input signal arrives at the station, whether or not the dropout delay generator has shut off the transmitter. Repeater time-out time and line transmit time periods may be selected independently with the repeater select jumper and the line select jumper.

9.3 SQUELCH GATE

In repeater stations, the dropout delay generator in the squelch gate module prevents the transmitter from shutting off duringloss or excessive fade of input signal for the length of time preset. The jumper can be set for 0 , 1 , 2, 4 or 8 second operation.

9.4 TWO-RECEIVER STATIONS

9.4.1 Stations equipped with two receivers can be connected for receiver \#l priority or receiver \#2 priority if desired. A
signal received on the priority receiver automatically mutes the other receiver. These jumpers are located on the line driver module.

$$
\begin{array}{r}
\text { Receiver \#1 priority - JU18 OUT } \\
\text { JU24 IN } \\
\text { Receiver \#2 priority - JU18 IN } \\
\text { JU24 OUT }
\end{array}
$$

9.4 .2
 Jumpers in the line driver module also allow receiver \#2 to be partially

 muted (audio attenuation) if desired, rather than the full muting as shipped from the factory. Attenuation of $10 \mathrm{~dB}, 20 \mathrm{~dB}$ or 30 dB in respect to the unmuted condition are possible by jumper connections as follows.$$
\begin{aligned}
& 30 \mathrm{~dB} \text { attenuation }- \text { JU25, } 26 \mathrm{IN} \\
& \text { JU27 OUT } \\
& 20 \mathrm{~dB} \text { attenuation }- \text { JU25 IN } \\
& \text { JU26, } 27 \text { OUT } \\
& 10 \mathrm{~dB} \text { attenuation - JU25, } 26 \& 27 \text { OUT }
\end{aligned}
$$

9.4.3 Receiver \#2 mute attenuation is a standard feature of dc controlled stations and optional on tone control.

10. CONTROL LINE CONNECTIONS

10.1 INTRODUCTION

10.1.1 The station can be controlled from a remote point over wire line circuits. Simplex audio is used, meaning that the remote point can send audio to the station or receive audio from the station, but not both at the same time. Therefore, a single audio pair will suffice. For dc remote control operation, the wire line must provide dc continuity for carrying the dc control currents. This must be the same pair that carries the transmit audio. For tone remote control operation the audio pair also carries the audio control tones.

10.1.2 Four-wire audio operation, wherein

 transmitter audio and receiver audio are carried on separate wire pairs, is possible with the optional Line Driver/4-wire, 2 -receiver Audio Module (this module is also used in 4 -wire, single receiver application). In such operation, line 1 is the transmit pair and line 2 is the receive pair.10.1.3 In stations with two receivers and fourwire audio, jumpers can be arranged to use line 2 to carry the audio from receiver \#2 only if desired.

10.2 LINE SPECIFICATIONS

The audio wire line(s) must meet the following specifications for acceptable radio communications. Verify the characteristics of leased telephone lines with the company providing the service before installation.

10.2.1 DC Remote Control Operation

AUDIO LINE REQUIREMENTS

1. FREQUENCY RESPONSE: 500 TO 2500 Hz
2. IMPEDANCE: 600-OHM BALANCED LINE

DC LINE REQUIREMENTS

1. DC RESISTANCE 0 TO 8000 OHMS. 2. MUST HAVE DC CONTINUITY.
10.2.2 Tone Remote Control Operation

FREQUENCY RESPONSE: 500 to 2500 Hz FREQUENCY TRANSLATION ERROR: $\pm 10 \mathrm{~Hz}$ MAX.
IMPEDANCE: 600-OHM BALANCED LINE
SIGNAL-TO-NOISE: 35 dB MIN.

Chart of Maximum Input and Loss

	MAXIMUM PHONE LINE
PHONE-COMPANY	LOSS USABLE WITH RE-
SPECIFIED	MOTELY-CONTROLLED
MAXIMUM INPUT	RADIO
$+8 \mathrm{vu}(14 \mathrm{dBm})$	32 dB
$0 \mathrm{vu}(6 \mathrm{dBm})$	24 dB
$-8 \mathrm{vu}(-2 \mathrm{dBm})$	16 dB

10.3 INSTALLATION

10.3.1

General

The control line may be installed prior to installation of the cabinet and terminated near the location chosen for the station. Conduit or two-wire cable can be used from this termination to the station cabinet.

10.3.2 Specific Connection Information

Connect the 600 -ohm lines to the screw terminals on the rear of the unified chassis
interconnect board as shown in Figure 4. (In 2-wire applications, use line 1 connections.)

10.3.3 DC Control Line Levels

When the dc control line is initially connected, it must be tested to assure that its loop resistance is low enough to allow sufficient current for remote operation. Use the following test procedure.

Step 1. Connect a dc milliameter in series with the dc control line.

Step 2. Have the operator press the push-totalk switch at the remote control console.

Step 3. The current must be at least +5.5 mA to key the transmitter and at least +10 mA for two-frequency transmitters. Check to see that the current is positive and not negative and that the station is actually keyed. Adjust the remote control console for Fl line current until +5.5 mA is achieved. For a two-frequency transmitter, adjust the remote control console for F2 line current of 10 to 12 mA .

If the line loop resistance is too high, the maximum line current from the console will not key the transmitter. There are two alternatives to correct this problem.
--Use a pair of lines having lower resistance while maintaining proper audio response, or
--Use an alternate pair of lines with lower resistance to carry dc current only. This pair need not have good audio loss or response characteristics.

Adjust the line current for "PrivateLine ${ }^{\prime \prime}$ disable at the remote control console for -2.5 mA , if a "Private-Line" model is being adjusted.

10.3.4 Tone Control Line Levels

The control tone levels for the remotely controlled functions a re adjusted at the remote control console. No additional adjustments are required.

Figure 4.
Control Line Connections

11. CONTROL LINE LEVEL ADJUSTMENT

11.1 GENERAL INFORMATION

11.1.1 Most telephone companies limit the

 maximum signal amplitude which they will allow on their lines. The most common maximum level is 0 vu (volume units); check the telephone company for the maximum level to be used on your lines. Adjust the audio levels to the maximum permissible level which will give the best signal-to-noise ratio. For lines not subject to telephone company restrictions adjust speech levels to +8 vu.11.1.2 The vu is the measurement for speech and can be measured only with a vu meter. This meter has special ballistics to control the rise and fall time and the overshoot of speech signal voltage. Since speech signals fluctuate so rapidly, special metering techniques are required. The meter point of a vu meter responds is a series of 'kicks' or deflections of varying amplitude. Over a period of time, a majority of peaks will reach approximately the same level. There will be a few very strong peaks which will exceed this level and a few peaks of lower level. These are ignored and the measured speech level equals the majority of the 'kicks" or peaks reached. Measurements show that the instantaneous peaks of a speech signal are about 10 dB higher than the vu value (the instantaneous peaks of a 0 vu speech signal will equal the peaks of a sine wave signal of $\pm 10 \mathrm{dBm}$ magnitude). Of course, a sine wave signal of $\pm 10 \mathrm{dBm}$ would produce a much greater volume because every cycle of the signal goes to peak amplitude.
11.1.3 Adjustment of the audio line levels is very difficult using actual speech signals which fluctuate so greatly. A sine wave signal (1000 Hz continuous tone, for example) is much easier to use for adjustments. However, sine wave signals are measured in dBm and the telephone company specifies the maximum signal level in vu. THERE IS NO CONVERSION FROM VU TO DBM OR VICE VERSA when measuring speech. Speech cannot be measuredin dBm or converted into dBm . The dBm is a unit to measure the sine wave power as referenced to 1 milliwatt of power. The power of a speech signal of a particular vu is not defined and is different for different speakers. IT IS POSSIBLE TO CALIBRATE A VU METER BY USING A SINE WAVE SIGNAL ON THE 600-OHM LINE, THEN MEASURING THE SAME SIGNAL IN DBM WITH A VOLTMETER. On a 600 -ohm line, a sine wave
signal that will produce a 0 vu reading will measure 0 dBm on a voltmeter. This does not mean that 0 vu is equal to 0 dBm . Remember, the peaks of an actual 0 vu speech signal will have instantaneous peaks of +10 dBm amplitude.
11.1.4 We would normally conclude that sine wave signal levels would be adjusted 10 dB higher than the vu level specified for the line. EXPERIMENTAL MEASUR EMENTS HAVE PROVEN THAT SINE WAVE SIGNAL LINE LEV ELS SHOULD BE 6 DB HIGHER THAN THE VU LEVEL SPECIFIED FOR THE LINE (+8 vu speech level should be adjusted for +14 dBm tone level; 0 vu speech level should be adjusted for +6 dBm tone level).

> 600-OHM LINE VU, DBM, AND VOLTAGE EQUIVALENCY CHART

If Maximum Speech Level For Line Is	Adjust Tone Line Level For (1 mW ref)	Voltage Equivalent
+14 vu	+20 dBm	7.74 V
+12 vu	+18 dBm	6.15 V
+10 vu	+16 dBm	4.88 V
+8 vu	+14 dBm	3.88 V
+6 vu	+12 dBm	3.08 V
+4 vu	+10 dBm	2.44 V
+2 vu	+8 dBm	1.94 V
0 vu	+6 dBm	1.54 V
-2 vu	+4 dBm	1.22 V
-4 vu	+2 dBm	0.97 V
-6 vu	0 dBm	0.77 V
-8 vu	-2 dBm	0.61 V
-10 vu	-4 dBm	0.48 V
-12 vu	-6 dBm	0.38 V
-14 vu	-8 dBm	0.30 V
-16 vu	-10 dBm	0.24 V
-18 vu	-12 dBm	0.19 V
-20 vu	-14 dBm	0.15 V
-22 vu	-16 dBm	0.12 V
-24 vu	-18 dBm	0.09 V
-26 vu	-20 dBm	0.07 V

11.2.1 General

11.2.1.1 A local speaker at the station may be used for testing and level settings. If the station is equipped with built-in metering, it includes a local speaker. If not, the speaker in a Motorola portable test set may be used by connecting the test set with "Micor" adapter to the control receptacle (J3) on the unified chassis interconnect board. Otherwise, a 'Micor" mobile speaker can be connected to the local speaker pins (J4-1 and -12 of unified
chassis interconnect board). The receiver VOLUME control sets the audio level at the local speaker only.
11.2.1.2 Exciter audio should be measured at the input to the exciter and adjusted for the sensitivity value stamped on the exciter. This level should be measured at pins 12 and 19 of Exciter Board Plug P902.

11.2.1.3 "Private-Line" receivers must be PL disabled during adjustments

with the PL DISABLE switch on the station control module. In "Private-Line" repeaters, the squelch gate must also be set for carrier squelch operation during adjustments by connecting jumper JUl4 to the active pin and JUl5 to the dummy pin. Be sure to return the jumpers to the PL condition after adjustments are complete.

11.2.1.4 If the station is equipped with a single-tone decoder module for re-

 peater access unplug the single-tone decoder during adjustments.
11.2.2 Repeater Level Setting

Step 1. Set the receiver SQUELCH control at squelch threshold.

Step 2. Inject an on-frequency carrier signal into the receiver antenna input. Adjust the signal level to 20 dB quieting.

Step 3. Adjust the REPEATER SQUELCH KEY control (squelch gate module) so the transmitter just keys.

Step 4. Modulate the receiver input with a $1000-\mathrm{Hz}$ tone at $\pm 5 \mathrm{kHz}$ deviation. Adjust the REPEATER LEVEL control (squelch gate module) so the exciter audio input (measured at pins 12 and 19 of Exciter Board Plug P902) is the value stamped on the exciter (modulator sensitivity +6 dB or approximately $\pm 5 \mathrm{kHz}$ transmitter deviation).

Step 5. On "PL" repeaters, return jumpers JUl4 and JUl5 to the "PL" condition.
11.2.3 $\frac{\text { Wire Line Controlled Base Stations }}{\text { and Repeater Stations }}$
11.2.3.1 Determine the maximum allowable audio level permitted on the lines (use +8 vu for non-regulated lines) and set line audio levels to this amplitude. Refer to the 600OHM, VU, DBM AND VOLTAGE EQUIVALENCY CHART for tone levels to be used.

NOTE

The following procedures assume the +8 vu speech level (+14 dBm tone level). For other speech levels, use a tone level 6 dB higher than the vu level (for 0 vu use +6 dBm); refer to the equivalency chart. On somelines, tone levels are not permitted to exceed the speech levels, even for short test tones (for example, maximum speech level of 0 vu and maximum tone level of 0 dBm$)$. When such regulations apply, use the special procedures for low level test tone.
11.2.3.2 As mentioned previously, the lines used to carry audio have an ac impedance of 600 ohms. The amplitude of signals is most conveniently measured in dBm . Zero dBm is equal to 1 milliwatt across 600 ohms. Most audio voltmeter, such as the Motorola Transistorized AC Voltmeter, are calibrated to read directly in dBm when measuring across a 600 -ohm impedance. Never use a volt-ohm meter or a multimeter.

Step 1. Apply a $1000-\mathrm{Hz}$ audio tone to the remote control console at a level sufficient to drive the amplifier into compression. Adjust the output of the remote control console for +14 dBm (or maximum allowable audio level) at its output terminals. If the level at the station is above 0 dBm , remove JUl on the station control module.

Step 2. Adjust the XCTR LEVEL control (station control module) so the exciter audio input (measuredat pins 12 and 19 of Exciter Board Plug P902) equals the value stamped on the exciter. (Modulator sensitivity plus 3 dB or approximately $\pm 5 \mathrm{kHz}$ transmitter deviation.)

Step 3. Remove the 1000 Hz audio tone.
Step 4. Set the receiver SQUELCH control for squelch threshold.

Step 5. Inject a 1000 uV carrier frequency signal into the antenna input of the receiver. Modulate the signal with a $1000-\mathrm{Hz}$ tone at $\pm 5 \mathrm{kHz}$ deviation.

Step 6. Adjust the LINE 1 OUTPITT (line driver module) for $+14 \mathrm{dBm}(3.9 \mathrm{~V})$ or maximum allowable audio level as measured with an audio voltmeter across the line 1 terminals. If four-wire audio operation is used, with the receiver output applied to line 2, adjust the LINE 2 OUTPUT control while measuring across the line 2 terminals.

Step 7. If the station has two receivers, both feeding to line 1 , set the LINE 1 OUTPUT control as specified with a $\pm 5 \mathrm{kHz}$ modulated carrier signal injected into receiver l. Next, inject a $\pm 5 \mathrm{kHz}$ modulated carrier into receiver 2 . If the line output on the voltmeter changes by more than 2 dBm , readjust the potentiometer on the receiver 2 audio and squelch board to match the receiver 1 reading.

Step 8. If the station has two receivers, each on a different line, adjust LINE 1 OUTPUT with a modulated carrier injected into receiver 1 , and adjust LINE 2 OUTPUT with a modulated carrier injected into receiver 2.

11.2.4 Special Procedure for Low Level Test Tone

NOTE
The following procedure is written for the 0 vu speech level and 0 dBm test tone level, but other levels may be used by substituting appropriate levels (levels across the 600 -ohm load should be 6 dB higher than the specified line level).

Step 1. Terminate the remote control console in a 600 -ohm load resistor rather than the line.

Step 2. Apply a $1000-\mathrm{Hz}$ audio tone to the remote control console at a level sufficient to drive the amplifier into compression.

Step 3. Connect an audio voltmeter across the 600 -ohm load resistor and adjust the line output for +6 dBm .

Step 4. Reduce the 1000 Hz audio tone input until the voltmeter reads 0 dBm .

Step 5. Remove the 600 -ohm load resistor and reconnect the line. Readjust the line output for 0 dBm across the line. Do not change the 1000 Hz tone level.

Step 6. Connect the audio voltmeter to the exciter audio input at the station and adjust the XCTR LEVEL control for 6 dB less than the value stamped on the exciter.

Step 7. Disconnect the line at the station and connect a 600 -ohm load resistor in its place.

Step 8. Apply a 1000 uV carrier signal to the receiver antenna terminal from an FM signal generator. Modulate the carrier signal with a 1000 Hz tone at $\pm 5 \mathrm{kHz}$ deviation.

Step 9. Connect an audio voltmeter across the 600 -ohm load resistor and adjust the LINE 1 OUTPUT control for +6 dBm .

Step 10. Reduce the deviation until the voltmeter reads 0 dBm .

Step 11. Remove the 600 -ohm load resistor and reconnect the line. Readjust the LINE 1 OUTPUT for 0 dBm as measured across the line.

notes:

1. All cables are coaxial. except

ALL CABLES ARE COAXIAL. EXCEPT
FUSE, AND HIGH CURRENT CABLES.
2. On i2-watt station models,

THE SEPARATE PA IS REPLACED
BY A 12 -WATT PA, WHICH MOUNTS
in the xmtr section of the uni-
CHASSIS, AS ShOWN.
potkneio3 ca cle Kit.
P/O TKN6B03, a A CABLE KIT.
p/o tKngeoza cable kit. base
STATIONS ONLY.
pio tlnsgama interconnect
board.

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

PARTS LIST

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

PARTS LIST

| REFERENCE |
| :---: | :---: | :---: |
| SYMBOL | | MOTOROLA |
| :---: |
| PART NO. |\quad DESCRIPTION

PARTS LIST

PARTS LIST

ols

"geme $=$

ARTS LIS

$\|: \stackrel{\square}{\square}:$

: 2 2new worr
cisin

PARTS LIST
TRN6190A Cabinet Hardware Kit (70" and 75") PL-3396-0

| | |
| :--- | :--- | :--- | TOP VIEW

THN6194B Cabinet (70-Inch) Indoor FRONT VIEW

REFERENCE SYMBOL	motorola PART No.	description
TLN6892A Rain Shield Kit		
	26-82929H01	SHield, rain (top)
	${ }^{26-84084 \mathrm{FO}} 1$	SHIELD, cover (top) Cover, rain shield
	${ }_{\text {26-82930Н01 }}$	SHIELD, rain (door)
	32-82930Н01	GASKET, rain shield
	32-82932H02	CASKET, rain shield
	2-10080A03	NUT, spring: No. 8; 4 req'd. SCREW, machine
	3-9661	
	132823	SCREW, tapping:
	3-135014	SCREW, tapping:
		$\varepsilon-18 \times 1 / 2^{\prime \prime} ; 6$ req'd.

Station Cabinets
Dimensional Details and Parts List Motorola No. PEPS-17767-C (Sheet 2 of 2
5/1/79-PHI
features

- Water drainage holes
- Thick door gaskets
- - Vent seal for stations with less than 110 W output
- - Vent kit for stations with greater than 110 W

CABINET INSTALLATIO

- Mount on elevated support or platform
- Shady or cool area if possible plat orm
installation of trng720a rain hood vent kit
Mount main section (largest assembly) over opening in top of cabinet using rectangular shaped gasket and $1 / 2$-inch sheet metal screws provided.
sheet meta screws provided.
- Instal small rectangular cover inside main section using machine screws provided.
- - Similarly, mount larger cover on top of entire assembly.
- Mount awning-shaped vent shield over rear door opening using " U " shaped gasket and $3 / 8$-inch sheet metal screws. -- Mount awning-shaped vent shield over rear door openit.
periodic maintenance
-- Use a paint scraper or putty knife to remove all loose paint and paint blisters from the cabinet. Use a wire brush or steel wool tor remove remaining rust from the area. The sufface must be cleaned to bare metal and free of all rust. Apply a thin even coat of primer, Part No. 11S1003A42, to all exposed metal. This coat should dry to the touch in inutes. Apply an even smooth coat of paint, Part No. 11S10226A33 (haze beige).

$$
\begin{aligned}
& \text { NOTE } \\
& \text { Be sure water drainage holes are cleared of all paint and primer. }
\end{aligned}
$$

The above primer and paint are available from Communications Division Parts Department. Spray paint (Part No. paint inside cabinet is not recommended.
The above kits and paint can be obtained from Motorola Communications Division Parts Department, 1313 East Algonquin Road, Schaumburg, Illinois 60196

"COMPA-STATION" OUTDOOR CABINET

OPTION C27 (FOR "COMPA-STATION" BASE RADIOS)

MODEL	SUFFIX
DESCRIPTION	
THN6143A	46' Cabinet (vented for continuous duty
THN6303A	$46{ }^{\prime \prime}$ ' Cabinet (sealed for intermittent duty only)
TLN4862A	Outdoor Vent Kit
TRN6448A	Cabinet Hardware Kit

Features

- Water drainage holes

Rust resistant equipment mounting rail
Thick door gasket
Vent seal for interype door latches
Vent kit for continittent duty stations
Sealed cabinet conuous duty stations
CABINET INSTAL
-- Mount on elevated support or platform

- Shady or cool are if possible platform
-- Minimum of eight inches for all obstructions

CAUTION

LOOSEN BOTH DOOR LATCHES BEFORE OPENING CABINET OR DAMAGE TO THE DOOR MAY RESULT.

68P81033E46-A
5/10/79-PHI

SIOE VIEW
"COMPA.STATION"
METERING $\&$ INTERCOM
MODEL TLNI74AA
INTERCOM MODEL TLNI745A

Eunction
 - Moder ILLNT74A provides iniercom between the

PARTS LIST

PARTS LIST

c100	${ }^{21-82428824}$	
cri 100, 101	${ }^{48-82420003}$	$\frac{\text { DIODE: }}{\text { filicon }}$ (SEE NOTE)
3	$9-830418$	$\frac{\text { ConNECTOR, receptacle: }}{4 \text { 4-contast }}$
Ls 1	50-84710c01	LOUDSPEAKER permane
m100	72-83120002	$\frac{\text { METER, }}{\text { dcs }}$ Scieie 0 - 50 microamp
$\begin{aligned} & \text { P100 } \\ & \text { P101 } \\ & \text { P102 } \end{aligned}$	$\begin{aligned} & 29-82676 \mathrm{C} 01 \\ & 29-82676 \mathrm{C} 02 \\ & 28-84208 \mathrm{BOL} \end{aligned}$	
		$\begin{aligned} & \text { test probe; BLA } \\ & \text { test probe; RED } \\ & 7 \text {-contacts } \end{aligned}$
$\begin{aligned} & { }^{R} \mathbf{R} 00 \\ & { }_{200}^{102} \end{aligned}$	$6-84640 C 61$$6-13756 \mathrm{D} 88$$6-124 A 33$	RESISTOR, fixed
$\underbrace{}_{\substack{\text { s1 } \\ \text { s2, }}}$	$40-83158 \mathrm{COI}$$40-83890 \mathrm{AO1}$	$\frac{\text { swirchi }}{\text { roary }}$ esec
non-Referenceditems		
	$5-483208$	${ }_{\text {GROMMET }}^{\text {GRILEE }}$
	15-83947K01	
	-8378801	
	948KO1	$\begin{aligned} & \text { (used with Pl02) } \\ & \text { CLIP; } 2 \text { req'd. (used with P1 } \\ & \text { CHASSIS. meter } \end{aligned}$
		价
		RETAINER, nylon; 2 req'd.

${ }^{\text {P4 }}$	$-8.84151 \mathrm{B03}$ $14-84556 \mathrm{~B} 02$	\qquad includes: HOUSING
	Non-referenced timm	
	42 -10217A02	STRAP, cable har ness; 7

 2. ntercom
 Step 2. Place the SPEAKER swich in hthe on poi
tion.

 Step 2. Pace the SPEAKER switch in the on posi-

 4. montoring

CURRENT VERSION

EARLIER VERSION

68P81033F28-G

$\underset{\substack{\text { (Sheet } 1 \text { of } \\ 91 / 80 \text { PHI }}}{\text { (}}$

"COMPA-STATION" METERING TNERCOM
MODEL TLNIT45A
function

	mamame				Seme	, memme
	\%emol		\% meatememom			
				\%		\%
	\%	${ }^{\text {mid }}$		${ }_{0}$		\%
meneme	\%		0	\%	\%	\% ${ }^{\text {anmamaw }}$
		\%				\%
	"			\ldots		cemem
casa			Comanay		${ }^{\text {coma }}$	
			\%	no		cemem
	: $:$				- mamat	
	\%	\%om		\%	边	
						边

emating instriction

operatingin

	｜cater

\section*{

 | col | \％isinaca | |
| :---: | :---: | :---: |
| | | Loveramere， |
| | | 为 |
| | | |
| | ${ }_{\text {cosem }}$ | |
| | | |
| | | comen |
| | 2．7099 | |
| | 3．10964 | |
| | | |
| | Reatroan | 边 |
| | | come |
| | ，mindems | come |
 }

1
,

\square

STATION ALIGNMENT

1. INTRODUCTION

This section of the manual contains the station alignment procedures. The station alignment is separated into two major procedures -- Transmitter Alignment and Receiver Alignment. For a complete alignment of the station, perform all the alignment procedures in sequence for each section as follows:

- Transmitter: Exciter, PA;
- Receiver: RF \& I-F.

When performing a touchup or check, only the particular step-by-step procedures is required.

NOTE
Before performing transmitter or receiver alignment, assure that the control line and audio line levels are set as described in the installation section of this manual.

In Upright station radios, metering is performed using the built-in metering capability. In "Compa- Station'" radios, metering may be performed by using either optional built-in metering (if so equipped), or by using a Motorola Model S1056B through S1059B Series

Portable Test Set. All meter readings are based on a 2000 -ohm equivalent series resistance in the meter. Therefore, meters not having a 2000 -ohm series resistance must have their readings corrected.

2. TRANSMITTER ALIGNMENT

2.1 EXCITER ALIGNMENT

Throughout the following Exciter Alignment Procedure, the metering plug will be inserted into the Exciter Metering Receptacle. If a PORTABLE TEST SET IS USED, SET THE OSCILLATOR \& METER REVERSING switch to the OFF position, and set the REFERENCE A/B switch (on the metering cable plug) to A.

Perform the Exciter Alignment Procedure as given in Table 1. Figure 1 illustrates the physical locations of the Exciter coils and controls. Figure 2 is a graph giving the number of turns necessary to preset coils L407 and L408.

IMPORTANT

If the POWER SET control ONLY is used to adjust the rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore the rf power to its rated level.

Table 1. Exciter Alignment Procedure

STEP	ADJUST	SELECTOR SWITCH POSITION	PROCEDURE
1. Set-Up	-	-	Key transmitter (with the XMTR ON pushbutton on portable test set).
2. Power Output	POWER SET control	-	Turn fully CCW (counterclockwise) - minimum power output. Unkey transmitter.
3. Channel Element	FREQUENCY SELECT switch	2	Select desired frequency on multi-frequency stations. Key transmitter. Meter 2 should indicate at least 10 uA .
4. Pre-Alignment	All Exciter coils	5	If exciter is completely untuned and no readings are obtained on meter 5 . 1. Set cores of tuning coils L401 thru L406 to the top of coil forms away from circuit board). 2. Set cores of tuning coils L407 and L408, away from circuit board end of coil forms, per Figure 2.
5. Buffer Output	L401	2	Adjust for minimum meter reading.
6. Buffer Output	L402, L401	3	Adjust (in order shown) for peak.
7. Tripler Output	L403	3	Adjust for minimum meter reading.
8. Tripler Output	L404, L403	4	Adjust (in order shown) for peak.
9. 1st Doubler Output	L405	4	Adjust for minimum meter reading.
10. 1st Doubler Output	L406, L405	5	Adjust (in order shown) for peak.
11. Exciter Output	1407	5	Adjust for peak.
12. Exciter Output	L408, L407	5	Adjust (in order shown) for peak.
13. -	-	-	Repeat Steps 6, 8 \& 10.
14. Power Output	POWER SET control	-	Key transmitter. Adjust CW (clockwise) to desired power output level. Unkey transmitter. This completes the Exciter Alignment Procedure.

Figure 1. Exciter Adjustment Locations

NOTE: ACTUAL SETTING IS NOT CRITICAL. NEAREST $1 / 4$ TURN IS ADEQUATE.
Figure 2. Exciter Tuning Coil L407 \& L408 Preset

2.2 POWER AMPLIFIER ALIGNMENT

2.2.1 General

The transmitter power amplifier is broadband. Any channel may be used for initial PA power setting.

If a built-in wattmeter is used during the following procedure, a UHF-rated, non-reactive, 50 -ohm dummy load must be connected to the transmitter's if power output connector. The dummy load must be capable of dissapating more than the rated power output of the transmitter. Homemade dummy loads or radiating antennas are not adequate. If an external wattmeter is used, make sure that it is UHF-rated and that the dummy load connected to it meets the above requirements.

2.2.2 PA Power Setting Procedure

IMPORTANT

If the POWER SET control ONLY is used to adjust the rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore the rf power to its rated level.

Figure 3. Power Set and Drive Limit Control Locations

Step	Adjust	Metering Plug Location	Test Instrument

NOTE
For proper operation of the power leveling circuitry, the DRIVE LIMIT control must not be adjusted for any lower power output than that given in the "Drive Limit" column of Table 2. In transmitters where the drive limit power output level is NOT obtainable, the drive limit protection circuitry is not necessary and the DRIVE LIMIT control can be set for maximum power output.

3	POWER SET Control	Power Control Board
Wattmeter	Power Set: Key transmitter. Adjust the POWER SET control counterclockwise, un til the power output under the "Power Set" column in Table 2 is obtained.	
CAUTION		

[^1] cedure for $406-470 \mathrm{MHz}$ stations. $470-512 \mathrm{MHz}$ stations must be adjusted for system ERP. Refer to the graphs of Effective Radiated Power and Table 2.

Figure 4. Graph of Effective Radiated Power

Table 2. Power Levels

$406-420 \mathrm{MHz}$			
Model	Station Power Output	Drive Limit	Power Set
B/C34	12	15	
B/C54	45	55	45
B/C64	75	88	75
$450-470 \mathrm{MHz}$			
C24	2	2.5	
B/C34	12	15	12
B/C44	20	25	20
B/C54	45	55	45
B/C64	75	88	75
$470-512 \mathrm{MHz}$			
B/C34			
B/C44	20^{*}	25	20
B/C54	40^{*}	50	40
B/C64	60^{*}	70	60

*ERP - Adjust power output to power shown or per system to obtain EFFECTIVE RADIATED power per station license.

NOTE

Power output of $470-512 \mathrm{MHz}$ stations is subject to FCC EFFECTIVE RADIATED POWER (ERP) licensing rules. Refer to the manufacturer's specification sheet for loss/gain factors involved in transmission lines, antennas, duplexers, etc. For example, the power loss in Teflon coaxial cable (Motorola Part No. 30-84173E01-RG400) is nominally $0.1 \mathrm{~dB} /$ foot.

2.3 OSCILLATOR FREQUENCY ADJUSTMENT

Step 1. Key the transmitter with no modulation (key the transmitter with the XMTR ON pushbutton on the portable test set rather than with the microphone). On tone-coded "Private-Line" stations, unplug the "Vibrasender" resonant reed from the "PL" tone generator. On digital-coded "Private-Line" stations, short the "PL" disable, J702, to ground J703. A Motorola Model TRN6332A Code Disable Plug is available for this purpose.

Step 2. Adjust the channel element warp capacitor, for the selected channel, to the exact desired frequency. In single-frequency models, adjust the F1 channel element warp capacitor. In multi-frequency models, adjust the warp capacitor that corresponds to the frequency selector switch setting; repeat for each frequency.

2.4 "IDC" ADJUSTMENT

Each channel element must be "warped" on frequency before setting "IDC".

Step 1. Connect an audio oscillator to the exciter's input -Audio Hi (pin 12) and, Ground (pin 1).

Step 2. Adjust the audio oscillator to 1000 Hz and 1 V rms. On "Private-Line" models, re-enable "PL".

Step 3. Key the transmitter, and adjust the "IDC", control for $\pm 5 \mathrm{kHz}$ deviation.

Step 4. Reduce the audio oscillator output to 0.25 V rms. Essentially full deviation $\pm 5 \mathrm{kHz}$ should still be indicated. Less than full deviation may indicate a weak audio stage.

3. RECEIVER ALIGNMENT

3.1 TWO-RECEIVER STATIONS

The two-receiver coupler (TLE8340A) used to connect both receivers to an antenna does not require alignment. Align both receivers while disconnected from the two-receiver coupler. Inject the rf signal generator output into each receiver at the rf preselector (or preamp) and align. Then reconnect the two-receiver coupler and check for proper operation. There will be a 3.5-4.0 dB loss in the coupler and a 6 dB gain through the preamplifier.

3.2 FREQUENCY CALCULATIONS

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{c}}=24 \mathrm{f}_{\mathrm{o}}+11.7 \mathrm{MHz} \text { or } \mathrm{f}_{\mathrm{c}}=24 \mathrm{f}_{\mathrm{o}}+11.8 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{o}}=\frac{\mathrm{f}_{\mathrm{c}}-11.7 \mathrm{MHz} \text { or } \mathrm{f}_{\mathrm{o}}=\frac{\mathrm{f}_{\mathrm{c}}-11.8 \mathrm{MHz}}{24}}{24}
\end{aligned}
$$

Where: $\mathrm{f}_{\mathrm{c}}=$ carrier frequency
$\mathrm{f}_{\mathrm{o}}=$ channel element frequency
$11.7 \mathrm{MHz}=$ mixer output frequency $(\mathrm{i}-\mathrm{f})$
$11.8 \mathrm{MHz}=$ mixer output frequency (shifted i-f)
$24=$ channel element harmonic
The receiver i-f is factory shifted from 11.7 MHz to 11.8 MHz when the difference between received carrier (channel spacing) frequencies is:

$$
\begin{array}{r}
11.7 \mathrm{MHz} \pm 25 \mathrm{kHz} \\
5.85 \mathrm{MHz} \pm 25 \mathrm{kHz} \\
3.90 \mathrm{MHz} \pm 25 \mathrm{kHz} \\
2.925 \mathrm{MHz} \pm 25 \mathrm{kHz}
\end{array}
$$

3.3 TUNE-UP FREQUENCY SELECTION FOR MULTI-FREQUENCY STATIONS

Maximum frequency separation up to 0.5 MHz -Set the frequency selector switch to the frequency closest to the center of the range covered. For two-frequency radios select the higher frequency.

Maximum frequency separation between 0.5 MHz and $1.0 \mathrm{MHz}-$ Remove one channel element and insert a tune-up element whose frequency is midway between the two most widely separated frequencies. Set the frequency selector switch to select this element.

3.4 RECEIVER ALIGNMENT (RF \& I-F BOARD) PROCEDURE

Perform the following Table 3.

Table 3. Receiver Alignment

NOTE: This procedure includes optional rf preamplifier alignment details. If an optional rf preamplifier is not used, simply disregard preamplifier identified steps in the procedure.			
STEP	ADJUSTMENT	METER POSITION	STAGE AND PROCEDURE
1	L101, L102, L103, L104, L105	-	Multiplier Coils - Adjust the cores of L101 through L105 to the end of the coil form away from the circuit board.
2	L106, L107, L108	Injection Filter - Adjust the tuning screws for L106 through L108 until the	
top of each tuning screw extends approximately one-eighth inch below the			
receiver shield.			

NOTE

If the receiver frequency has been changed by more than 1 MHz , preset tuning screws L111 through L116 so that the screw end is in the space between the board and its shield, and approximately one-eighth inch from the shield.

If the receiver is equipped with the optional preamplifier, disconnect and bypass the preamplifier. Set the generator to the carrier frequency by observing meters 4 and 5 .

NOTE

If no indication is seen, unscrew the shell of the antenna cable connector, and pull the plug partially out of the jack so that the cable shield no longer makes contact with the station chassis. Set the generator to the carrier frequency as indicated by meter positions 4 and 5, then reconnect the cable shield to the radio. Adjust L111 through L116 clockwise one turn at a time, watching meter 5 for an increase in indication above noise level.

NOTE
In Steps 11 through 13, meter 11 is for portable test set only. Use an ac volt meter, across speak er terminals if no portable test set available.

Tune L111 through L116 for peak reading on meter 5, reducing generator output level as necessary to keep meter 5 out of saturation. Tune L110 for peak on meter 5. Repeat the adjust of L111 through L116. Turn L111 through L116 in or out as necessary until all screws are level. Repeat the adjustment of L111 through L116.

STEP	ADJUSTMENT	METER POSITION	STAGE AND PROCEDURE
11	$\begin{aligned} & \text { L106, L107, } \\ & \text { L108 } \end{aligned}$	$\begin{gathered} 11 \\ \text { (rcvr audio) } \end{gathered}$	Tune L106, L107 and L108 for best noise quieting (minimum meter indication). Maximum meter 11 sensitivity may be obtained by placing the multiplier switch on the test set in the 0.2 V ac position.
12	$\begin{aligned} & \text { L111, L112, L113, L114, } \\ & \text { L115, L116. } \end{aligned}$	$\begin{gathered} 11 \\ \text { (rcvr audio) } \\ \hline \end{gathered}$	Tune L111 through L116 for best noise quieting. Repeat until no further improvement in quieting level can be obtained.
13	C1,C2, L111	5,11	Premplifier - If the receiver is equipped with the optional preamplifier, reconnect the preamplifier. Tune C1 and C2 for maximum meter 5 reading. Then tune $\mathrm{C1}, \mathrm{C} 2$, and L 111 for best noise quieting on meter 11 .
14			Perform 20 dB quieting sensitivity measurement as check of alignment. Refer to the Receiver Maintenance section of this manual for a description of how to check for 20 dB quieting sensitivity. The 20 dB quieting level should be lessthan 0.5 uV 0.25 uV with preamplifier).

1. -INTRODUCTION

This section of the manual describes local operation techniques required to perform maintenance checks. Overall station maintenance is detailed in the front of this section while specific chassis maintenance (transmitter and receiver) is provided in the following paragraphs. Maintenance checks for control modules are given with the applicable module in separate Control and Applications Instruction Manual 68P81025E60.

2. LOCAL OPERATION FOR TESTING AND MAINTENANCE

Once power is applied and the station is properly adjusted, this base or repeater station is normally operated entirely unattended from a remote control point. However, the station may be locally operated utilizing controls on control modules in the unified chassis. This type of operation may be necessary to accomplish station maintenance and testing.

Local operation of the station is primarily accomplished utilizing controls on the station control module located in the unified chassis. The switch functions are listed in Table 1.

WARNING

The transmitter can be keyed remotely. To prevent unexpected transmitter keying while servicing the station, be sure the LINE DISABLE switch is actuated (direction of arrow). Also, the TLN4662A Squelch Gate Module must be temporarily removed from the remote control chassis if the station is equipped with any of the following dc transfer modules:

$$
\begin{aligned}
& \text { TLN4637A (no suffix) } \\
& \text { TLN4659A (no suffix) } \\
& \text { TLN4664A (no suffix) }
\end{aligned}
$$

The following are procedures pertaining to the local operation of a remotely controlled station or repeater station.

2.1 TRANSMITTER CONTROL

To prevent the transmitter from being keyed remotely, set station control module LINE DISABLE switch in the direction of the arrow. At conclusion of local operation, be sure that the LINE DISABLE switch is returned to its normal position (opposite direction of the arrow).

Table 1. Station Control Module Switch Functions

*The DISABLE LIGHT is illuminated when the LINE DISABLE or "PL" DISABLE switch is actuated.

MOTOROLA INC.

2.2 LOCAL MICROPHONE

2.2.1 Stations Without Built-In Metering

Connect a "Micor" microphone (Motorola Model TMN6054A or equivalent) to the microphone receptacle on the unified chassis interconnect board (part of J4, pins 3, 4, 5, 14, 15 and 16).

2.2.2 Stations With Built-In Metering

Connect a Motorola Model (TMN6071A) microphone, or equivalent to the MICROPHONE receptacle on the metering chassis.

2.3 LOCAL SPEAKER

2.3.1 Stations Without Built-In Metering

Connect an 8 -ohm, 10 -watt test speaker to J4, pins 1 and 12, on the unified chassis interconnect board. This speaker is used to monitor all received messages. A Motorola "Micor"' speaker (Models TSN6016A, B or TSN6020A) plugs directly into these pins without requiring an adapter.

2.3.2 Stations With Built-In Metering

Place the SPEAKER ON-OFF switch to the ON position.

2.4 PORTABLE TEST SET (FOR STATIONS WITHOUT BUILT-IN METERING)

A Motorola S1056-S1059 Series Portable Test Set with TEK-37 or TEK-37A Adapter Cable can be used as a local control facility. Connect the red "control'" plug of the adapter cable to the metering receptacle (J 3) on the unified chassis interconnect board. The speaker in the test set can be used for monitoring received signals and a "Motrac" microphone (Model TMN6071A) connected to the microphone receptacle on the test set can be used for originating transmissions. The XMIT button on the test set can be used to key the transmitter without voice modulation.

2.5 FREQUENCY SELECTION

For stations with a two-frequency transmitter, the frequency can be locally selected by the F1-F2 switch on the dc transfer module or on the F2 tone decoder module. For stations with a two-frequency receiver, frequency selection is made by momentarily operating the REC F1 SELECT or REC F2 SELECT switch on the dc transfer module or on the F2 tone decoder module. For four-frequency stations, the frequency is selected by momentary operation of the desired frequency select switch on the four-frequency control module after the XMIT switch on the station control module is actuated.

2.6 SELECTION OF OTHER MODES

All other functions that can be activated by remote control can also be activated locally. Each module has test switches to activate any such functions, such as RPTR ON and RPTR OFF. Most of these switches are momentary action, which allows the station to continue operating in the selected mode until reset.

2.7 RECEIVED AUDIO

After the local speaker is turned on, or connected, the station is ready to receive audio. The receiver "PL" feature, if used, can be defeated by setting the station control module "PL" DISABLE switch in the direction of the arrow. (At the conclusion of local operation, be sure that the "PL" DISABLE switch is returned to its normal position.) If necessary, the receiver can be unsquelched utilizing the receiver SQUELCH control on the receiver chassis. The VOLUME control on the receiver chassis sets the audio output level of the local speaker.

2.8 TRANSMITTING

NOTE

Before initiating any local transmissions, monitor the channel to be sure that it is clear of other transmissions.

The transmitter is locally keyed by either activating the station control module XMIT switch or activating the push-to-talk microphone switch. Voice is transmitted using the local microphone.

2.9 CONCLUDING LOCAL OPERATION

At the conclusion of local operation, perform the following operations and checks to be sure that the station is ready for remote operation.
Step 1. Reset receiver squelch level per procedures in the Station Alignment Section (Audio \& Squelch) of this manual.

Step 2. Be sure that station control module switches are positioned for normal operation (reference Table 1).
Step 3. Disconnect microphone and test speaker (if used).
Step 4. Set all external power switches ON.
Step 5. Be sure that station is operable from remote location.

Step 6. Turn local speaker OFF (if applicable).
Step 7. Disconnect or remove any metering plugs or test set.

Step 8. Be sure that cabinet doors are locked.
Step 9. Be sure that vents in cabinet are unobstructed.

3．MAINTENANCE TECHNIQUES

3．1 GENERAL

Specific Maintenance procedures for individual chassis，which comprise this station，are contained in the latter paragraphs of this section．Control module maintenance information is provided in the separate Control \＆Applications manual 68P81025E60．As an aid to isolating a malfunction to a specific chassis or module，a variety of general techniques are appropriate．

3．2 TRANSMITTER AND RECEIVER

Most troubles in the transmitter or receiver can be quickly isolated with metering checks．A log of normal meter readings for this station should be maintained． Each time maintenance is performed，the meter readings should be entered into the log．Variations from the previous readings can help to isolate a malfunction or may indicate an impending failure．If no previous meter readings are available，typical or minimum meter readings may be found with the receiver rf \＆i－f，exciter， power amplifier or power control board maintenance sections，as well as metering procedures．The maintenance log sheet is included at the end of this sec－ tion．

3．3 POWER SUPPLY

A check of power supply voltages under load and no－load conditions（transmit and standby）should quickly isolate any malfunction．

3．4 REMOTE CONTROL UNIT

Isolation of a malfunction in the control portion of the unified chassis requires a functional understan－ ding of the overall station operation and the inter－rela－ tionship between the various modules and chassis of the station．The＂Functional Description＂section along with the＂Remote Control Chassis Modules＂section of manual 68P81025E60 provide necessary information． With a basic understanding of station operation， troubles may be isolated by analyzing the following questions：
（1）Can the station be operated locally but not re－ motely？If so，this eliminates many circuits as pos－ sible sources of trouble．
（2）How many modes are inoperable？Concentrate testing on circuits that are common to the in－ operable modes．
（3）Are adjustments properly set？This includes audio level adjustments at the station and at the remote control point．
（4）Are jumpers properly installed？The many jumpers in this station provide vast flexibility，but could be a source of trouble if imnroperly added， removed，or not removed，as the case may be．

4．ROUTINE MAINTENANCE

A check list for the performance of routine maintenance is given in Table 2.

Table 2．Routine Maintenance Check List

ITEM	CHECK
Receiver	Measure the signal level required to obtain 20 dB quieting．
	Compare meter readings with the minimum value and all previous readings taken． Realign the receiver，if necessary．
	For PL stations，check for proper operation of the PL decoder．Does the squelch open when the proper PL tone or binary code is detected？
Transmitter	Measure transmitter output power．
	Compare meter readings with the minimum value and all previous readings taken． Realign the transmitter，if necessary．
	Verify that each transmitter channel is on frequency and adjust if necessary．
	Tune and load the transmitter to the antenna．
	Measure transmitter frequency deviation for both voice and PL coded modulation． Adjust the＂IDC＂control，if necessary．
	Measure the exciter modulator sensitivity．
System Operation	Measure and adjust the audio input to the exciter．
	Measure and adjust the receiver（s）audio output to the control line．
	Check control line levels and functions for proper operation．
	Adjust receiver（s）on frequency with the distant transmitter（s）in the system．
	Check for proper repeater operation on repeater models．
	Check all accessory equiment for proper operation．
After Performing Maintenance	Check all items listed in the Concluding Local Operation paragraph of this section of the instruction manual．

5. RECOMMENDED TEST EQUIPMENT

A list of recommended test equipment for maintenance of this station is given in Table 3.

Table 3. Recommended Test Equipment

	Table 3. Recommended Test Equipment	
Type of Equipment or Type of Measurement	Equipment Characteristics	Recommended Type

NOTES:

1. For "Digital Private-Line"'stations, the Transmitter Deviation Monitor must have a low frequency response of less than 1 Hz . The Motorola R1200 Service Monitor, with deviation monitor and oscilloscope plug-in modules, requires modification to meet this requirement. No alternate test equipment is recommended.
2. For "Digital Private-Line" stations the RF signal generator must accept external modulation with a low frequency response of less than 1 Hz (essentially dc). The Motorola Model R1010 Series FM Signal Generator and the Motorola R1200 Service Monitor meet this requirement. Most other signal generators will probably not meet this specification.

6. TRANSMITTER MAINTENANCE

6.1 GENERAL

The following paragraphs provide maintenance shop type procedures for the individual transmitter circuits in the station. After preliminary tests have localized the trouble to the particular area, use these bench
tests, which include measurements with built-in station metering or a Motorola portable test set, for testing and troubleshooting.

NOTE

Before troubleshooting a section of the transmitter, make certain all previous sections operate properly.

6.2 EXCITER MAINTENANCE

NOTE

The exciter board must be installed in the transmitter during testing to provide the necessary power, ground, control and signal connections. The circuit board should always be secured in place with all mounting screws for operation and testing to provide good rf ground to all stages of the exciter. The exciter should be tested while installed in the station -- usually the preferred method. However, if desired, it can be bench tested in a VHF ($132-174 \mathrm{MHz}$) "Micor"' mobile radio, except that the time-out-timer will be inoperative.

6.2.1 Metering

The exciter is equipped with a metering receptacle which allows five major test points to be measured. The output of the exciter is measured on meter position 5. With the portable test set connected to the metering receptacles, or by using the built-in station metering kit (if so equipped), readings may be made at each of the major test points in the circuit. A failure in almost any portion of the exciter will produce a low or zero meter reading for one or more of the test points. Improper alignment will also cause improper meter readings.

6.2.1.1 Using Built-In Station Metering

Step 1. The output of the exciter must be terminated into its normal point, the first bandpass filter. The output of the station, through the antenna network, must be terminated in a 50 -ohm, non-reactive, dummy load or an antenna.

Step 2. Plug the metering.plug into the exciter metering receptacle.

Step 3. Turn the station ON.
Step 4. Set the selector switch on the built-in station metering kit to position 1 . Key the transmitter and whistle into the microphone long enough to observe the meter reading.

Step 5. Set the selector switch to positions 2, 3, 4 and 5 respectively, keying the transmitter and observing the meter readings for each position (whistling not required). On multi-frequency stations, repeat the readings for each exciter frequency. An analysis of the meter readings to determine whether each circuit is good or bad follows in the "Performance Tests'' paragraph.

6.2.1.2 Using the Portable Test Set

To make the measurements using a portable test set, the portable test set must be connected to the station as listed in the following procedure.

Step 1. Connect the 20-pin plug of the test set adapter cable to the test set. When the test set is not in use, disconnect the 20 -pin plug to conserve battery life. The plug acts as an ON-OFF switch, completing the battery circuit.

Step 2. Connect the red "control'" plug of the adapter cable to the control receptacle on the unified chassis interconnect board. Connect the white "metering" plug of the adapter cable to the metering receptacle on the exciter circuit board.

Step 3. Set the FUNCTION SELECTOR switch of the portable test set to the XMTR position.

Step 4. Set the OSCILLATOR \& METER REVERSING switch of the test set to the OFF position.

Step 5. Set the $1 \mathrm{~V} / 100 \mathrm{mV}$ switch on the adapter cable to the 100 mV position (TEK-37). On the later version adapter cable (TEK-37A), the switch is omitted and the unit always operates at 100 mV sensitivity.
Step 6. Set the REF A-B switch on the adapter cable to position A.

Step 7. The output of the exciter must be terminated into its normal point, the first bandpass filter. The output of the station, through the antenna network, must be terminated in a 50 -ohm, non-reactive, dummy load or an antenna.

Step 8. Turn the station ON.
Step 9. Connect a microphone to the microphone receptacle on the portable test set or to the unified chassis interconnect board.

Step 10. Set the selector switch of the test set to position 1. Using the push-to-talk switch on the microphone, key the transmitter and whistle into the microphone long enough to observe the metering reading.

Step 11. Set the selector switch to positions 2, 3, 4, and 5 respectively, keying the transmitter with the XMTR ON pushbutton on the test set or the push-to-talk switch on the microphone and observing the meter reading for each position. On multi-frequency stations, repeat the readings for each exciter frequency. An analysis of the meter readings to determine whether each circuit is good or bad follows in the "Performance Tests" paragraph.

Each time maintenance is performed on the exciter, the readings should be compared with the previous set of readings. Any degradation of performance will quickly be noted. Often, a lower reading may indicate an impending failure and corrective action may be taken before the circuit fails entirely. The minimum values given in Table 4 may be used if no previous readings are available. However, these readings are an absolute minimum for normal operation and are no substitute
for a log kept of meter readings. A typical exciter may have much higher readings and should not be allowed to drop to these minimum values before corrective action is taken. If a \log is maintained, even small drops in meter readings will be noticed. This condition should be interpreted as abnormal operation and corrective action taken (such as realignment) to assure continued peak performance.

6.2.2 Performance Tests

The following performance tests may be used for troubleshooting to isolate the point of abnormal performance. They may also be used after repair and alignment to assure that the exciter meets all specifications before it is returned to service.

Step 1. Terminate the transmitter in an antenna and measure the radiated signal with a Motorola digital frequency meter and deviation monitor or other highly accurate frequency measuring device ($\pm .00005 \%$ or better) when the transmitter is keyed in the following steps.

NOTE

Do not use the push-to-talk switch on the microphone as background noise will modulate the signal. Use the local XMIT switch on the Station Control Module.

Step 2. Key the transmitter to produce an unmodulated carrier signal. In tone-coded "Private-Line" stations disable the "Private-Line" encoder by unplugging the "Vibrasender" resonant reed. In digital-coded

Table 4. Minimum Acceptable Exciter Meter Readings

SELECTOR SWITCH POSITION	REFA-B SWITCH POSITION (TESTSET ONLY)	READING	CIRCUIT METERED	IF LOW, THE DEFECTIVE CIRCUIT IS
1	A	2 uA (no mod) $10 \mathrm{uA} \mathrm{(120mV}$ audio at Mic input)	Audio output of IDC circuit	IDC circuit

6.2.2.1 Power Output Specification and Test Procedure

The exciter shall provide at least 400 milliwatts rf output on $1 / 3$ of the assigned frequency. On multifrequency stations with frequency separation of less than $\pm 850 \mathrm{kHz}$, at least 400 milliwatts output shall be provided on each channel.

Step 1. Connect the equipment as connected in "Metering" paragraph, except connect the test set "Metering" plug to the exciter metering receptacle.

Step 2. Set the selector switch to position 5. This checks the output of the exciter. Key the transmitter and observe the meter indication. A meter reading of at least 20 uA equals an rf signal level of 400 milliwatts.

Step 3. On multi-frequency stations, repeat the test for each exciter frequency. Select the frequency to be tested with the frequency selector switch associated with the station. The test set meter should indicate at least 20 uA for each frequency.

6.2.2.2 Frequency Specification and Test Procedure

The carrier frequency output of the transmitter shall be within $.0002 \%$ of the assigned carrier frequency for each channel of operation.
"Private-Line"' stations, disable the "Private-Line" encoder by shorting the PL disable pin (J701) to ground (J702).

Step 3. Measure the transmitter carrier frequency output. On multi-frequency stations, repeat the test for each frequency.

Step 4. If adjustment is required, set the "warp" capacitor on the associated channel element for the assigned carrier frequency output. For best accuracy, the station should be brought to room temperature $\left(+70^{\circ}\right.$ to $\left.75^{\circ} \mathrm{F}\right)$ and the test equipment thoroughly warmed up. This brings the channel element to the center of its temperature compensation range. Once calibrated at this temperature, it can most accurately compensate for future temperature changes.

6.2.2.3 Deviation Specification and Test Procedure

The exciter output shall deviate $\pm 5 \mathrm{kHz}$ with an audio input of 1 volt at 1000 Hz . In "Private-Line" stations, the exciter output shall deviate 0.5 to 1 kHz with "Private-Line" modulation applied.

Step 1. Terminate the transmitter output in an antenna and measure the radiated signal with a deviation meter.

Step 2. In "Private-Line" stations, re-enable PL, which was disabled in the previous test. Key the transmitter with only "Private-Line" tone modulation. The deviation meter should indicate 0.5 to 1 kHz .

Step 3. Connect an audio oscillator output to pins 12 and 19 on the exciter board. Adjust the audio oscillator to 1000 Hz and 1 volt as measured on an ac voltmeter. The deviation meter should indicate $\pm 5 \mathrm{kHz}$ deviation.

Step 4. Adjust the audio oscillator over the entire 300 to 3000 Hz range, keeping the audio level at approximately 1 volt. The deviation meter should never exceed $\pm 5 \mathrm{kHz}$, nor drop below $\pm 2.5 \mathrm{kHz}$.

6.2.2.4 Audio Sensitivity Specification and Test Procedure

An audio input of 120 mV at 1000 Hz shall produce approximately $\pm 3.0 \mathrm{kHz}$ deviation.

Step 1. After completion of the deviation test, reduce the output of the audio oscillator to 120 mV at 1000 Hz .

Step 2. The deviation meter should indicate approximately $\pm 3.0 \mathrm{kHz}$. Meter reading 1 may be noted at this time for future reference. Future audio sensitivity checks may then be made by comparing the meter 1 reading with the noted value.

6.2.3 Troubleshooting

6.2.3.1 Check Input Voltages

If there are no meter indications at one or more of the metered points, check the dc input voltages to the exciter circuit board as given in Table 5 .

Table 5. Exciter DC Input Voltages

P902-11 \& 13	+9.6 volts with respect to chassis.
P902-6	Keyed A- (approximately -13.6 volts with respect to A,+ pin 7) when keyed.

If meter indications localize the trouble to a specific stage or two, measure the dc input voltages to the suspected stages. Refer to the schematic diagram for the normal voltages.

NOTE
In "Private-Line" stations, the transmitter cannot be keyed if the PL encoder is removed unless a jumper (JU401) is connected from pin 8 to pin 10 of the exciter to complete the keying circuit. This jumper is permanently connected in exciters for non-"Private-Line"' operation.

6.2.3.2 Alignment as a Troubleshooting Technique
 Low meter readings, low power output, and

 subnormal performance are very often corrected by realignment. Therefore, alignment should be the first troubleshooting step performed for these symptoms. Many technicians prefer to use alignment as the first troubleshooting step in all cases. During the alignment procedure, any trouble caused by a defective component will be discovered and corrected before alignment can be completed.
6.2.3.3 Isolating Defective Components

If meter readings are abnormal or tests indicated subnormal performance, a logical troubleshooting procedure is required to isolate the defective component efficiently. The meter readings and results of performance tests usually localize the malfunction to one or two specific stages. A zero meter reading indicates either (1) no drive from the preceding stages, or (2) a defective component in the metering circuit which includes the base-emitter junction of the following transistor which operates as a rectifier. The exciter troubleshooting chart summarizes these results in a logical sequence. A few voltage and resistance checks in the suspected circuit should readily isolate the defective component. Note that the final amplifier stage of the exciter is powered by A+ and keyed A-. Therefore, voltages should be checked with respect to keyed A- instead of chassis ground.

6.3 TRIPLER/LOW LEVEL AMPLIFIER MAINTENANCE

6.3.2 Tripler/Low Level Amplifier Removal and Reinstallation Procedure

NOTE

Field servicing of the tripler/low level amplifier should not be attempted. If the tripler/low level amplifier is defective, replace the entire unit. Removal and replacement is described following performance testing.

6.3.1 Performance Test

Step 1. Be sure the transmitter is not keyed. Turn the DRIVE LIMIT control fully counterclockwise (minimum drive limit).

Step 2. Check all PA transistors except for those in the controlled stage for proper collector operating voltages (+13.6 volts). The controlled stage collector voltage cannot be checked until later in this procedure.

Step 3. Turn the POWER SET control fully counterclockwise (minimum power output).

IMPORTANT

If the POWER SET control ONLY is used to reduce the rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore the rf power to its rated level.

Step 4. Connect a UHF rated wattmeter to the transmitter output connector with an 8 -inch or shorter length of coaxial cable. The wattmeter must be terminated in a 50 -ohm, non-reactive, dummy load.

Step 5. Disconnect the transmitter output coax cable connector from the antenna network.

Step 6. Disconnect the rf connector from the output jack on the tripler/low level amplifier. Connect the tripler/low level amplifier output to the antenna network input using a short BNC-to-BNC adapter cable.

Step 7. Key the transmitter and check the tripler/low level amplifier output. The wattmeter reading should be at least 0.8 watt. If a minimum of 0.8 watt cannot be obtained, connect a short phono to BNC adapter cable between the tripler filter output port and the antenna network input connector. The wattmeter should read at least 0.08 watt.

Step 8. If the tripler/low level amplifier power output is low, check exciter meter position 5 . With the REF A-B switch on the TEK-37A Test Set Adapter Cable set to B , the meter 5 reading should be at least 15 uA . If the meter 5 reading is low, the exciter is defective. If the meter 5 reading is 15 uA or greater, the tripler/low-level amplifier is bad. Also check all rf cable connectors and the bandpass filters.

6.3.2 Tripler/Low Level Amplifier Removal and Reinstallation Procedure

NOTE
All steps are performed from the front of the station.

6.3.2 All Models Except 2 \& 12-Watt Models

Step 1. Disconnect the coaxial cables interconnecting the power amplifier to the LOW LEVEL AMP OUT and ANT NETWORK IN connectors on the unichassis.

Step 2. Loosen the three captivated shield cover screws and remove the shield cover.

Step 3. Loosen the captivated screw that holds the LOW LEVEL OUTPUT receptacle bracket and remove the receptacle from its mounting bracket.

Step 4. To reinstall the tripler/low level amplifier, reverse the procedure given in Steps 1-3.
6.3.2.2 $2 \&$ 12-Watt Models Only

Step 1. Loosen the two captivated power amplifier assembly screws on the PA heat sink.

Step 2. Pivot and lift the PA assembly up and off the pivot bushing and simultaneously disconnect the following connectors:
-- power plug from 12 W PA receptacle on transmitter interconnect board.
-- tripler plug from low level amplifier output receptacle on tripler/low level amplifier.
-- PA output plug from antenna network.
The PA assembly is now completely disconnected from the unified chassis and can be placed to one side.

Step 3. Loosen the three captivated screws used to mount the 12 -watt PA mounting bracket and remove the bracket.

Step 4. Disconnect the plug connected to TRPLR receptacle on the transmitter interconnect board.

Step 5. Loosen the four captivated screws that hold the tripler/low level amplifier in place.

Step 6. Carefully pull out the tripler/low level amplifier part way out and then disconnect the plug connected to the output of the first bandpass filter. The tripler/low level amplifier is now completely disconnected.

Step 7. To reinstall the tripler/low level amplifier, reverse the procedure given in Steps 1 to 6.

6.4 POWER AMPLIFIER MAINTENANCE

CAUTION

The power amplifier stages must be installed in the station for testing to provide the necessary power, ground, control, heat sinking and signal connections.

6.4.1 Performance Test

The only performance test needed for the power amplifier section of the transmitter is measurement of the rf power output at the transmitter output connector. Before performing the following test, be sure the exciter and tripler/low level amplifier are operating properly.

Step 1. Connect a UHF rated wattmeter to the transmitter output connector, using an 8-inch or shorter length of coaxial cable. The wattmeter must be terminated in a 50 -ohm, non-reactive, dummy load.

Step 2. Key the transmitter and observe the power output reading on the wattmeter.

Step 3. If necessary, adjust the POWER SET control on the power control board until rated transmitter power output is obtained. If rated power output cannot be obtained, remove the shield from the power control board and set the DRIVE LIMIT control fully counterclockwise. Replace the power control board shield, key the transmitter, and again adjust the POWER SET control for rated transmitter power output.

IMPORTANT

If the POWER SET control ONLY is used to reduce the rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore the rf power to its rated level.

Step 4. If it was necessary to change the DRIVE LIMIT control setting to obtain rated transmitter output power, refer to the TRANSMITTER ALIGNMENT section of this manual for the DRIVE LIMIT control adjustment procedure.

Step 5. If the performance test indicates that the power amplifier section of the radio set is not functioning properly, proceed with the following troubleshooting.

6.4.2 Troubleshooting

If a transmitter malfunction has been isolated to the power amplifier circuits, the cause of the malfunction can be found by using the following procedures. Visual checks and operating voltage checks should be made before more extensive troubleshooting is begun.

6.4.2.1 Visual Check

Step 1. Visually check for obvious physical defects, such as broken leads, broken or cracked microstrip substrates and broken or disconnected components. These defects should be corrected immediately. Then recheck the power amplifier performance. If the power amplifier fails the performance test, make voltage checks next.

Step 2. If the visual inspection reveals overheated components, do not replace the overheated parts until the cause of the overheating has been found and corrected. Otherwise, the new part may be damaged.

6.4.2.2 Voltage Check

Check for A+ and A- at the feedthrough connections and for proper voltages at the collectors of each transistor. Certain defects such as cracked microstrips, intermittent leads, etc., may not be obvious to a visual inspection.

NOTE

Cracked microstrips can often be found by sliding the tip of a modeling knife blade or some other sharp object along the surface of the ceramic substrate. Usually, a noticeable 'bump'' will be felt as the sharp object passes over the crack in the microstrip.

6.4.2.3 Isolating Defective Components

If visual and voltage checks do not reveal the cause of subnormal power amplifier performance, refer to the power amplifier troubleshooting chart, the interstage testing procedure, and the driver and final amplifier testing procedure. These sections provide systematic troubleshooting methods to help isolate the defective power amplifier stage and component.

6.4.3 Interstage Testing Procedure

During the troubleshooting procedure it is sometimes desirable to determine the power output of an individual transmitter stage with a given input level. The following procedure can be used to supplement a procedure using the meter readings given on the power amplifier troubleshooting chart.

If this procedure shows that a PA stage is malfunctioning and must be repaired, refer to the "Power Amplifier Repair Procedure" paragraph of this section.

NOTE

Due to the voltage requirements of NPN transistors, all "rf ground" plating is at A-. Therefore, caution should be used to prevent connection of "ground" plating on the power amplifier to chassis ground, either directly or by the use of test equipment ground leads. If ac powered test equipment is used, the ground lead must not be electrically connected to ac line ground.

CAUTION

DO NOT "SHORT CUT" THE FOLLOWING PROCEDURE. This procedure is designed to avoid situations in which excessive drive might be applied to the predriver or driver stages. Excessive drive could destroy the predriver or driver stages. It is possible to safely begin stage gain measurements at a stage with a lower power level than the predriver, if metering indicates that one of the lower power level stages is not operating properly. UNDER NO CIRCUMSTANCES, however, should attempts be made to "short-cut" the following procedure by checking the driver or final PA stage without first checking the output of the predriver stage.

Step 1. Be sure the transmitter is not keyed. Turn the DRIVE LIMIT control fully counterclockwise (minimum drive limit).

Step 2. Check all PA transistors, except for those in the controlled stage, for proper collector operating voltage (+13.6 volts). The controlled stage collector voltage cannot be checked until later in this procedure.

Step 3. Turn the POWER SET control fully counterclockwise (minimum power output).

IMPORTANT

If the POWER SET control ONLY is used to reduce the rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore the rf power to its rated level.

Step 4. Connect a UHF rated rf wattmeter to the transmitter output connector with an 8 inch or shorter length of coaxial cable. The wattmeter must be terminated in a 50 -ohm, non-reactive, dummy load.

Step 5. 2-W models -- bypass the antenna network built-in attenuator, as described in "Attenuator Bypassing (2-watt models only)' paragraph of the antenna network maintenance portion of this section, then proceed to Step 7a.

12-W models -- proceed to Step 7a.

$20-, 40$-, and 45 W models -- disconnect the predriver output from the final amplifier and proceed to Step 6.

60 - and $75-\mathrm{W}$ models -- disconnect the predriver output from the driver input stage and proceed to Step 6.

Step 6. Using an adapter cable, connect the predriver output to the antenna network. The shield of the adapter cable should be soldered to the microstrip ground plating as close as possible to the point where the cable center conductor is soldered. Use a 50 -watt soldering iron and silver solder (1.4% silver, 36.1% lead, $62.5 \% \mathrm{tin}$), as recommended in the "Power Amplifier Repair Procedures" paragraph of this section. NEVER operate a PA stage without a proper 50ohm termination.

NOTE

If the proper adapter cable is not available, the output of the predriver stage can be connected to the wattmeter with a short (less than $8^{\prime \prime}$) coaxial cable. Be sure the wattmeter is rated for use at UHF and is terminated in a 50 -ohm, non-reactive, dummy load that is also rated for UHF. Home-made dummy loads or radiating antennas are not adequate for these tests.

If the predriver output is connected directly to the wattmeter, the accuracy of the measurement will be affected. Remember that since the antenna network is not connected between the output stage and the wattmeter, the wattmeter readings will be about 15% greater than those listed in Table 6 of this procedure.

Step 7. Defeat the "No Power" Protect circuit on the power control board as follows:

CAUTION

It is assumed that at this point in the procedure the interstage coupling to the transmitter final amplifier section has been disconnected to measure the power output of one of the earlier PA stages. In that case the following procedure is safe. IN NO CASE SHOULD THIS PROCEDURE BE USED WHEN DRIVE IS APPLIED TO THE TRANSMITTER FINAL AMPLIFIER STAGES.

Step 7a. Disconnect ac power from the station.
Step 7b. Remove the shield from over the power control board.

Step 7c. Refer to the power control board schematic diagram and circuit board detail. Locate capacitor C611.

Step 7d. Short the leads of C611 together, using a short piece of jumper wire soldered to the plating side of the circuit board. Be careful to avoid shorting any other plating.

Step 7e. Reconnect power to the station and proceed with the troubleshooting procedure.

Step 8. Key the transmitter. Slowly increase the predriver power output by turning the POWER SET control clockwise while watching the wattmeter. Set the predriver power output to the level specified in Table 6 of this procedure. If the proper predriver power output setting can be obtained, go directly to Step 3 of the "Driver and Final Amplifier Testing Procedure" paragraph of this section.

Step 9. If the proper predriver power output settings cannot be obtained; perform the following:

2 \& 12 W models only-- Using an adapter cable, connect the controlled stage output to the antenna network (soldering techniques and requirements as described in Step 6).

All models except $2 \& 12 \mathrm{~W}$ models -- Disconnect the test cable from the predriver output and connect it to the controlled stage output.

Table 6. PA Stage Power Output for Interstage Troubleshooting (Minimum Values)

Note 1: These power levels take into account a 20% loss in the Antenna Network.
Note 2: Exciter meter 5 reading must be at least 20 uA . Tripler/low level amplifier should have an output of 1 watt,

Step 10. Key the transmitter and check the controlled stage output power reading on the wattmeter. If the controlled stage output power is at least the value given in Table 6, the predriver stage is defective.

Step 11. If the controlled stage power output is low, check the controlled stage transistor collector voltage with the POWER SET control set fully clockwise. If the drive level from the power control board is OK , the controlled stage transistor collector voltage will be within one volt of the dc supply voltage.

Step 12. If the controlled stage transistor voltage is normal, but the stage power output is low, the controlled stage is defective. It is assumed that the tripler/low level amplifier tests made earlier in the transmitter maintenance procedure have shown that the tripler/low level amplifier is operating properly.

Step 13. After all malfunctions have been discovered and corrected, and proper predriver power output is obtained, disconnect the test coaxial cable and make sure all rf interstage connections are restored.

Step 14. Re-enable the "No Power" Protect circuit on the power control board by removing the jumper that was connected across C611, earlier in this procedure. Be sure none of the power control board plating is shorted. Reinstall the power control board shield.

Step 15. Reconnect the transmitter output coax to the antenna network. Make sure a properly terminated wattmeter is connected to the transmitter output connector. The coaxial cable between the station and the wattmeter should be 8 " or less in length.

Step 16. Key the transmitter. If adjusting the POWER SET control allows rated power to be obtained, do a complete POWER SET and DRIVE LIMIT control adjustment procedure. Refer to the TRANSMITTER ALIGNMENT section of this manual. If rated power output cannot be obtained, proceed to the "Drive and Final Amplifier Testing Procedure" paragraph of this section.

6.4.4 Driver and Final Amplifier Testing Procedure

It is assumed that before beginning the following procedure, it has been determined that the predriver, controlled stage, tripler/low level amplifier, and exciter are operating properly.

The driver and final amplifier stages may have one, two, or four transistors. These differing configurations require slightly different troubleshooting techniques. The procedure is therefore broken.up according to the number of transistors used in the stage.

6.4.4.1 All Driver and Final Amplifier Stages

Step 1. Connect wattmeter to the transmitter output connector, using an 8 -inch or shorter length of coaxial cable. Be sure the wattmeter is terminated in a 50 -ohm, non-reactive, dummy load.

Step 2. Disconnect the predriver output connection from the following stage. Connect the predriver output to the input of the antenna network, using an adapter cable.

Step 3. Connect a Motorola test set to the Power Amplifier metering socket.

Figure 1. Capacitor Bridging Method of Testing PA Transistors

Step 4. Key the transmitter. Adjust the POWER SET control on the power control board until the exact predriver output level listed in Table 6 is obtained. Observe the test set meter 5 reading. Write down the reading for reference later in this procedure. Turn the POWER SET control fully counterclockwise.

Step 5. Disconnect the adapter cable from the predriver output and reconnect the predriver output to the driver or PA input.

6.4.4.2 Single-Transistor Stages

Step 1. 20-watt power amplifier - Connect the final amplifier output coaxial cable to the antenna network input.

60 - and 75 -watt PA drivers -- Disconnect the driver output from the final amplifier input. Connect the driver output to the antenna network input, using an adapter cable.

Step 2. Key the transmitter and adjust the POWER SET control for the same meter 5 reading recorded in Step 4, and observe the wattmeter. Compare the wattmeter reading with the value given in Table 6 . If the stage power output is significantly less than the value given in Table 6, the stage is defective.

6.4.4.3 Two-Transistor Stages

Step 1. 40- and 45 -watt power amplifiers -- Connect the final amplifier output cable to the antenna network input.

60- and 75-watt PA drivers -- Disconnect the driver output from the final amplifier input. Connect the driver output to the antenna network input, using an adapter cable.

Step 2. Key the transmitter, adjust the POWER SET control for the same meter 5 reading recorded in Step 4, and observe the wattmeter. Compare the wattmeter reading with the value given in Table 6. If the stage output is greater than 25% of the value given in Table 6, it is likely that both transistors are bad. If the stage output is greater than 25% of the value in Table 6 , but still below rated power, it is probable that only one of the transistors is defective. The following procedure is a quick way to determine which transistor is bad: (Refer to Figure 1).
-- Trim the leads of a $10 \mathrm{pF}, \mathrm{NP} 0$, disc ceramic capacitor to within $1 / 4$-inch of the capacitor body. As shown in Figure 1, a length of shrinkable tubing over the capacitor body will make handling easier.

- One at a time, bridge each transistor baseemitter junction with the 10 pF capacitor, while the transmitter is keyed. If the transistor is good, the power output of the stage will drop significantly (greater than 20\%). If the transistor is bad, the stage power output will drop only slightly.

6.4.4.4 Four-Transistor Stages

Step 1. 60- and 75-watt final amplifiers -- Be sure the final amplifier output coaxial cable is connected to the antenna network input.

Step 2. Key the transmitter, adjust the POWER SET control for the same meter 5 reading previously recorded in Step 4, and observe the wattmeter. Compare the wattmeter reading with the value given in Table 6. If the wattmeter reading is significantly below the value in Table 6, it is probable that one or more of the transistors is bad.

Step 3. To isolate the defective pair of transistors, alternately disconnect the chokes from each pair, key the transmitter, and observe the wattmeter. Disconnecting each choke should produce the same decrease in transmitter power output. The defective pair is the one that causes the least power output change, when it is disabled.

Step 4. After the pair that contains the defective transistor is identified, use the capacitor bridging method to determine which transistor of the pair is bad. The capacitor bridging technique is explained in the previous two-transistor stage testing section of this procedure.

Figure 2.
Recommended Tools for Power Amplifier Repairs

6.4.5 Power Amplifier Repair Procedure

6.4.5.1 Recommended Tools for PA Servicing

Because of the unique power amplifier construction, it is recommended that the tools listed in Table 7 and shown in Figure 2 be used during the repair procedures in this section. Except for the silver solder (item 4) and the Wakefield thermal compound (item 9), which are supplied with replacement transistors, use of these tools is not mandatory. However, use of these tools will make quaility power amplifier repairs easier to perform.

The soldering iron tips listed in Table 8 and shown in Figure 3 are designed to make transistor removal, and chip capacitor removal and replacement easier.

Table 7. Recommended PA Servicing Tool

ITEM NUMBER	DESCRIPTION	MOTOROLA PART NUMBER
1	Solder remover	ST726
2	60 -watt soldering iron	ST-1144
	Special tip for PA transistor removal	ST-1161
3	60 -watt soldering iron	ST-1144
	Special tip for chip capacitor soldering	g ST-1160
4	Silver solder; alloy content 1.4% silver, $\mathbf{3 6 . 1 \%}$ lead, 62.5% tin	10-10041A61
5	50 -watt soldering iron	ST-646
	1/4' chisel tip	ST-1174
6	50 -watt soldering iron with $1 / 8^{\prime \prime}$ chisel tip	ST-648
7	Modeling knife	ST-1172
	5 extra modeling knife blades	ST-1173
8	Tweezers	ST-492
9	Wakefield thermal compound	11-83166A01

Figure 3.
Special Soldering Iron Tips for PA Servicing
Table 8. Special Soldering Iron Tips

ITEM NUMBER	MOTOROLA PART NO.	APPLICATION
1	ST-1160	Chip capacitor removal and replacement
2	ST-1161	PA transistor removal

6.4.5.2 Visual Inspection

After the malfunctioning stage has been identified, perform a thorough physical inspection before beginning repairs.

Check the ceramic substrate for hairline cracks. Hairline cracks can often be found by running a sharp instrument along the ceramic beside the microstrip conductors. Check in BOTH directions. A crack will usually "catch" the instrument, even when the crack is too small to be seen. Broken microstrip conductors can also be found through ohmmeter continuity checks.

Look for "leached" chip capacitors. Figure 4 shows examples of typical leaching of chip capacitor end metallization. Leaching is most often evidenced by failure of the chip capacitor end metallization to take solder. In severe cases the stacked plates inside the capacitor may be visible.

Figure 4.
Examples of Leached Chip Capacitors

If no defects are found, proceed with repairs to the defective stage.

6.4.5.3 Power Amplifier Transistor Removal

Step 1. As shown in Figure 5, unsolder all component connections at or near the points where the rf power transistor leads are soldered to the microstrip.

Step 2. Chip capacitors are connected between rf power transistor leads. Remove all four chip capacitors, using two soldering irons, as shown in Figure 6A, or the special soldering iron tip (Motorola Part No. ST-1160), as shown in Figure 6B.

CAUTION

Chip capacitors must not be re-used. Excessive heat applied during capacitor removal can cause leaching of the metallic contact area.

Step 3. Remove the two ground straps that cover the transistor mounting screws. See Figure 7.

Step 4. Remove excess solder from the transistor lead area with a vacuum bulb solder remover.

Step 5. Carefully lift each of the four rf power transistor emitter leads. Use a modeling knife blade or longnosed pliers to lift each emitter lead while applying heat, as shown in Figure 8. Be sure the solder has melted before attempting to lift the lead, but avoid prolonged or excessive heating.

Step 6. Remove the transistor mounting screws.

Step 7. Alternately lift the base and the collector leads. Use a modeling knife blade or long-nosed pliers to lift a lead while applying heat, as shown in Figure 9. Be sure the solder has melted before you attempt to lift a lead, but avoid prolonged or excessive heating. All six power transistor leads can be desoldered simultaneously using a Motorola ST-1161 soldering iron tip on a 60 - watt iron. See Figure 10. Grasp a transistor mouting lug with long-nosed pliers as shown, and as soon as the solder melts, remove the soldering iron and lift the transistor out.

NOTE

The ST-1161 soldering iron tip should not be used to install transistors.

6.4.5.4 Power Transistor Replacement Procedure

Step 1. Lightly pre-tin the underside of each transistor lead. See Figure 11.

CAUTION

When pre-tinning the transistor leads do not allow thick build-ups of solder to occur. Such a build-up could cause the transistor to separate from its mounting base when the mounting screws are tightened. Avoid getting solder or flux on the transistor mounting base.

Step 2. Thoroughly clean the transistor mounting surface, using alcohol or another solvent that leaves no residue. Apply a light coat of Wakefield Thermal Compound (Motorola Part No. 11-83166A01) to the mounting surface (bottom side of the transistor). See Figure 12.

Figure 5.
Component Removal Procedure (Typical)

FAEPS-15966-0
Figure 6B.
Chip Capacitor Removal Using ST-1160 Soldering Iron Tip

ヨON \forall Nヨ \perp NI $\forall W$ NOII $\forall \perp S$

Figure 7.
Ground Strap Removal

Figure 8.
Disconnecting Power Transistor Emitter Leads

Figure 9.
Disconnecting the Power Transistor Base and Collector Leads

CAUTION

Thick coatings of thermal compound or foreign material on the transistor mounting surface will cause poor thermal contact and may result in early transistor failure.

Figure 10.
Power Transistor Removal, Using ST-1161 Soldering Iron Tip

Figure 11. Pre-Tinning Power Transistor Leads

Step 3. Mount the transistor. Be sure the collector lead, marked " C "' on the transistor cap faces the proper direction. Refer to Figure 13. Refer to the Microstrip Location Diagram and Cross-Reference Table in the Power Amplifier Introduction section of this manual for the part numbers of the microstrip circuits according to location for various radio models.
 Application of Wakefield Thermal Compound to Transistor Mounting Surface

NOTE:
AEPS-27739-0
"C" On TRANSISTOR CAPS WOICATES PLACEMENT of collector lean.

Figure 13. Power Transistor Placement Detail

Step 4. Carefully tighten the transistor mounting screws. Figure 14 shows proper transistor positioning before the leads are soldered to the microstrip.

CAUTION

To avoid damage to the transistor or the microstrip, the transistor mounting screws MUST be tightened before the transistor leads are soldered to the microstrip conductors. Do not tighten mounting screws too much or thread stripping in the heatsink will result.

Step 5. Solder each transistor lead, one at a time, to the microstrip. Use the silver solder (Motorola Part No. $10-10041 \mathrm{~A} 61$) supplied with the replacement transistors. The use of a generous amount of the solder will insure a good contact over the entire area of the transistor tab and microstrip interface, and will assist in the reflow soldering of the chip capacitors. Use care that the solder does not bridge the leads or short either the base or collector leads to the microstrip ground. See Figure 15.

Step 6. Install the new chip capacitors supplied with the power transistor. Use a low-wattage soldering iron (50 watts or less) with a chisel tip (Figure 16A) or a 60 watt iron with a ST-1160 tip (Figure 16B). A reflowtype technique MUST be used and the soldering iron tip MUST NOT be allowed to touch the chip capacitor end termination. Make sure the chip capacitor is placed as close to the transistor cap as possible, as shown in Figures 16A and 16B.

CAUTION

Proper soldering technique and chip capacitor placement are essential to acceptable transmitter operation. Use extreme care when replacing chip capacitors.

Step 7. Check the chip capacitor solder connections. The solder should cover the entire capacitor end termination. If the solder adheres to only the lower portion of the end termination, as illustrated in Figures 17A and 17B, assume that the capacitor end termination metallization is leached. The capacitor must be replaced if the radio transmitter is to function properly. Remember that the leaching is probably the result of allowing the soldering iron to touch the chip capacitor end termination.

Figure 14.
Power Transistor Placement

6.4.5.5 Microstrip Removal and Keplacement

Refer to the Power Amplifier section of this manual for location information for the eight possible microstrip boards. Each board is keyed with a letter identification. The letter is cross-referenced in a table to determine the microstrip board part number used for the various models of the radio.

Figure 15.
Soldering Power Transistor Leads to the Microstrip

Figure 16A.
Chip Capacitor Installation, Using a 50-Watt Soldering Iron with a Chisel Tip

Figure 16B.
Chip Capacitor Installation, Using a 60-Watt Soldering Iron with ST-1160 Tip

FAEPS-15974-O
Figure 17A.
Appearance of Leached Chip Capacitor on Microstrip

SIDE VIEW
Figure 17B.
Chip Capacitor Soldering

2.

PA TROUBLESHOOTING CHAR

$\begin{aligned} & \text { TEST SET } \\ & \text { SELECTOR } \\ & \text { SWITCHM } \\ & \text { SOSITION } \\ & \hline \end{aligned}$		$\begin{aligned} & \substack{\text { seavo } \\ \text { sesio } \\ \text { mookt }} \end{aligned}$	MINIMUM METER READING, u	с1Rcur miteno
${ }^{1}$	$\underbrace{\text { d }}_{\substack{\text { AOf } \\ \text { Of }}}$		¢20 $\substack{15 \\ \text { 25 }}$ 1	(enteriver
2	${ }_{\substack{\text { aff } \\ \text { OFF }}}^{\text {a }}$			orven DC Cunam
5				VOLTAGE DIFFERENCE BETWEEN A+ AND VOLT- AGE AT CONTROLLED STAGE.

PA Troubleshooting Chart Evp-114zs-A $\quad \begin{aligned} & \text { Motorola No. } \\ & 4 / 15 / 79-\mathrm{PHI}\end{aligned}$

NOTE

Microstrips cannot be ordered as complete kits. Each part must be ordered by its individual part number. When ordering a new microstrip be sure to order new chip capacitors, including those that are associated with the rf power transistors; unless new rf power transistors are ordered (chip capacitors are included). Used chip capacitors must not be reused.

Step 1. Remove all transistors as described in the previous instructions.

Step 2. Remove all external component connections to the microstrip, including interface connections with other stages.

Step 3. Remove all remaining ground straps (if any).
Step 4. Lift the microstrip substrate out of the plastic holder.

Step 5. Place the new microstrip substrate into the plastic holder. Refer to the Power Amplifier section for location of the microstrip in the transmitter power amplifier assembly.

Step 6. Carefully clean all solder build-up off the transistor leads. Only a very thin layer of solder should remain. Check for solder-bridge shorts between transistor leads.

Step 7. Using silver solder (Motorola Part No. 10-10041A61), install the transistors and their associated chip capacitors as described in the "Power Transistor Replacement Procedure" paragraph of this section. BE SURE TO CAREFULLY TIGHTEN THE TRANSISTOR MOUNTING SCREWS BEFORE SOLDERING THE TRANSISTOR LEADS TO THE MICROSTRIP CONDUCTORS.

Step 8. Reconnect all external components to their proper locations on the microstrip.

6.5 POWER CONTROL BOARD MAINTENANCE

CAUTION

The power control board is incorporated in the transmitter to provide protection for the rf power transistors under environmental conditions such as voltage, load, or device variations. In order for the circuitry to operate properly and provide protection, it is necessary to have adjusted the power output controls (DRIVE LIMIT and POWER SET) in accordance with the Transmitter Alignment Procedure.

NOTE
The power control board must be installed in a transmitter for testing to provide the necessary power, ground, and control connections. For bench testing of a board that has been removed from the radio set and replaced by a spare, another radio set is required as a test fixture for troubleshooting.

6.5.1 Performance Tests

6.5.1.1 POWER SET Control Test

This control allows the power output of the transmitter to be varied from zero (0) power out with the control fully counterclockwise to greater than the rated output.

CAUTION

For proper operation of the protection circuitry, it is imperative that the POWER SET control never be left in a position that exceeds rated power output.

Refer to the PA Power Setting Procedure in the "Transmitter Alignment" portion of the Station Alignment section of this manual.

Step 1. Key the transmitter.
Step 2. Adjust the POWER SET control until the rated power output is reached.

IMPORTANT

If the POWER SET control ONLY is used to reduce the rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore the rf power to its rated level.

Step 3. Unkey the transmitter.

6.5.1.2 Automatic Power Leveling Test

A separate variable dc power supply must be used to perform this test.

Step 1. Disconnect the 13.6 volt lead at the PA. Connect a 16 volt source in its place. Set the power supply output to +13.6 volts.

Step 2. Key the transmitter.
Step 3. Vary the supply voltage from +13.6 volts to +16 volts. The transmitter's power output variation should be between $+10 \%$ and -5%.

Step 4. Unkey the transmitter and reconnect the PA to the station's power supply.

6.5.1.3 DRIVE LIMIT Control Test

This control allows the drive power to the power amplifier from the controlled stage to be limited to a level sufficient to provide rated performance. Its purpose is to set a limit on the drive power that can be called for by the automatic power leveling circuitry. This prevents earlier PA stages from being damaged by overdrive if later stages fail. Depending on the position of the DRIVE LIMIT control, the maximum collector voltage of the controlled stage can be limited to between 6.5 volts and 12.5 volts. The proper pocedure for setting the DRIVE LIMIT control is given in the Transmitter Alignment Procedure Portion of the Station Alignment section of this manual.

CAUTION

For proper operation of the power leveling circuitry, the DRIVE LIMIT control must not be set for any lower power output than that given in the Drive Limit column in Table 4 of the Transmitter Alignment section of this manual.

In stations with high gain driver and power amplifier stages, the power leveling POWER SET circuitry may operate the controlled stage at a collector voltage less than 6.5 volts. In such stations, little or no effect will be seen from the DRIVE LIMIT control. If it is not possible to lower power output, with the DRIVE LIMIT control, to the level called for in the transmitter alignment procedure, set the DRIVE LIMIT control to its maximum clockwise position (maximum drive limit.)

In some stations the rf drive reserve is not sufficient to require use of the DRIVE LIMIT control. In these stations, the power output level called for in the transmitter alignment procedure cannot be obtained. If such a situation is found, set the DRIVE LIMIT control fully counterclockwise (minimum drive limit).

6.5.1.4 'No-Power" Protect Circuit Test

The "no-power" protect circuit prevents the transmitter power amplifier from being operated without being connected to the antenna network. If the forward power detector in the antenna network does not sense more than approximately 7 -watts, the "nopower" protect circuit will shut-off the drive to the power amplifier stages. This protect circuit can be made to operate to check its performance by turning the power output of the transmitter down below 7-watts using the POWER SET control. Once the "no-power" protect circuit operates, the transmitter must be rekeyed to return drive power, after the original "nopower' condition is corrected.

6.5.2 Troubleshooting

The power control board troubleshooting chart outlines a logical procedure for finding major functional failures. However, because of the complexity of
the circuit operation, it is impossible to provide a troubleshooting chart that will be usable for some of the more subtle problems that may appear in the power control board performance tests. Efficient location of these "subtle" problems depends on a thorough knowledge of the power control board theory of operation. In any case, it is a good idea to review the power control board functional description in the Transmitter section of this manual before beginning troubleshooting,

Once you are familar with the circuit operation, a defective stage or component can be found by making voltage measurements and comparing them with those shown on the schematic diagram. Observe the voltage changes that occur when the POWER SET and DRIVE LIMIT controls are varied.

The transmitter power amplifier stages can be disabled to permit easier power control board troubleshooting. To disable the PA stages, remove the heavy RED lead from the barrier strip and cover with an insulator. On 12-watt (or 2 -watt) units, remove the interconnect plug. If the PA stages are disabled, the "NoPower" protect circuits will go into operation. To disable the "No-Power" protect circuits, use the following procedure.

Step 1. Remove ac input power from the station.
Step 2. Remove the shield from over the power control board.

Step 3. Connect a jumper across C611 on the power control board.

Step 4. Reconnect ac power to the station and perform whatever troubleshooting is required.

CAUTION

Before the power amplifier stages are reenabled, be sure to re-enable the "NoPower" protect circuit. DO NOT OPERATE THE POWER AMPLIFIER STAGES WITH THE "NO-POWER" PROTECT CIRCUIT DISABLED.

Table 9 lists some power control board malfunctions and their possible causes:

Table 9. Power Control Board Troubleshooting Hints

Symptom	$\begin{array}{c}\text { Possible Cause - } \\ \text { Check the following: }\end{array}$
$\begin{array}{l}\text { POWER SET malfunction- } \\ \text { ing }\end{array}$	a.

and/or CR1002\end{array}\right]\)

6.6 ANTENNA NETWORK MAINTENANCE

NOTE
Field servicing of the antenna network is not recommended. If an antenna network is defective, it must be replaced as a unit.

6.6.1 Performance Tests

6.6.1.1 Transmitter Leg Insertion Loss Measurement (Repeater and Base Stations)

The transmitter leg insertion loss should be about 0.8 to 0.9 dB ($15-20 \%$ power loss). Use the following procedure:

Step 1. Connect a thru-line rf wattmeter, a 50 -ohm, non-reactive, dummy load, and adapter cables as shown in Figure 18.

NOTE

For accurate wattmeter readings, make sure low VSWR cable connections are made at all points. This means that all connectors must be properly installed and that a minimum number of adapters are used.

Step 2. Key the transmitter and write down the wattmeter reading.

Step 3. Insert the rf wattmeter between the power amplifier and the antenna network. Place an N type through connector in place of the wattmeter between the antenna network and the dummy load.

Step 4. Key the transmitter and write down the second wattmeter reading.

Step 5. If the difference between the two wattmeter readings is greater than 20% of the second wattmeter reading, rêplace the antenna network. Refer to the "Antenna Network Removal and Reinstallation Procedure" paragraph in this section.

6.6.1.2 Attenuator Bypassing

(2-Watt Models Only)
For power amplifier and/or antenna network troubleshooting, bypass the attenuator (assembly within the antenna network). The following steps outline the necessary procedure.

Step 1. Unsolder the coaxial cable from port 2 on the circulator.

Step 2. Unsolder the coaxial cable from the output of the attenuator (this cable is also connected to the harmonic filter).

Step 3. Solder the coaxial cable from the harmonic filter to port 2 on the circulator. When soldering this coaxial cable, the shield must be soldered as close to the center conductor as permissible. Position the cable away from the circulator.

NOTE
The transmitter leg insertion loss should be about 1.0 to 1.1 dB ($21-23 \%$ power loss). Use the following procedures.

Step 4. Repeat Steps 1 through 4 in the "Transmitter Log Insertion Loss Measurement" paragraph in this section.

Step 5. If the difference between the two wattmeter readings is greater than 23% of the second wattmeter reading, replace the antenna network. Refer to the Antenna Network Removal and Reinstallation Procedure in this section.

Step 6. To reassemble the antenna network after testing, reverse Steps 1 thru 3. Soldering to the attenuator is easier when the antenna network chassis is removed from heatsink. A layer of Wakefield Thermal Junction Compound (Motorola No. 11-83166A01) is required when the chassis is rejoined to the heatsink.

6.6.1.3 Receiver Leg Insertion Loss Measurement (Base Stations Only)

The antenna network receiver leg insertion loss should be about 1.2 to 1.3 dB (a voltage loss of

Figure 18.
Transmitter Leg Insertion Loss Test Set-Up
$10-15 \%$). Use the following procedure to measure the receiver leg insertion loss:

Step 1. Connect an rf signal generator to the antenna network output connector (J1012) through a 6 dB rf pad.

Step 2. Make a 20 dB quieting sensitivity measurement. Refer to the rf and i-f Board Maintenance paragraph in the Receiver Maintenance portion of this section for the test procedure. Write down the measured 20 dB quieting sensitivity.

Step 3. Connect the rf signal generator to the rf input of the receiver rf and i-f board (J104), at the bottom of the unified chassis.

Step 4. Make a second 20 dB quieting sensitivity check. Write down this second 20 dB quieting sensitivity figure.

Step 5. If the difference between the two 20 dB quieting sensitivity figures is greater than 15% of the second 20 dB quieting sensitivity figure, replace the antenna network. Refer to the "Antenna Network Removal and Reinstallation" procedure paragraph in this section.

6.6.1.4 Antenna/PA Isolation Measurement
 (Repeater \& Base Stations)

The antenna network ensures that, should the antenna load open, the transmitter output power reflected back to the PA will be reduced by at least 20 dB . Lack of sufficient reflected power attenuation can damage the power amplifier.

Step 1. Disconnect the 7.5 ampere, in-line, high current, A+ fuse (between the power amplifier and the unified chassis) to prevent transmitter PA operation.

Step 2. Disconnect the transmitter output coaxial cable from the ANT NETWORK IN receptacle (J1011) on the antenna network.

Step 3. Disconnect the antenna network output cable from output receptacle J 1012 on the antenna network.

Step 4. Connect an rf signal generator to the output receptacle, J1012, and an rf voltmeter to the ANT NETWORK IN receptacle, J1011.

Step 5. Set the signal generator to the transmitter carrier frequency and at maximum output level.

Step 6. Note the rf voltmeter reading. The reading should be at least 90% lower than the signal generator output level (20 dB).

Step 7. If the isolation isn't at least 20 dB , replace the antenna network. See the "Antenna Network Removal and Reinstallation" procedure paragraph in this section.

Step 8. Repeater stations -- proceed to following Step 9. Base stations -- skip Step 9, and proceed to "Transmitter Output/Receiver Input Isolation Measurement" paragraph in this section.

Step 9. Disconnect the test equipment and reconnect all previously removed station cables. Be sure to reconnect the fuse that was removed in Step 1.

6.6.1.5 Transmitter Output/Receiver Input Isolation Measurement (Base Stations Only)

The antenna network provides approximately 20 dB of isolation between the transmitter rf output connector and the receiver input cable (antenna network output to receiver) with the transmitter unkeyed and the station antenna connector terminated in a $50-$ ohm load. When the transmitter is keyed, switching action in the receiver leg of the network provides 40 -to- 50 dB of additional isolation. Perform the following procedure to ensure that proper switching action takes place.

NOTE
Lack of switching action in the receiver leg of the network can allow sufficient transmitter power into the receiver to damage the receiver mixer transistor.
Step 1. Be sure that the 7.5 ampere, A + fuse (between the power supply and the unified chassis) is disconnected to prevent transmitter PA operation.

Step 2. Disconnect the transmitter output coaxial cable from the ANT NETWORK IN receptacle (J1011) on the antenna network.

Step 3. Connect an rf signal generator to the antenna receptacle (J1012) and an rf voltmeter to the antenna network receptacle (J1013) of the network. (If a voltmeter is not available, leave the cable connected to the receiver rf deck and use 20 dB quieting as a measuring reference.)

Step 4. Set the rf signal generator to the receiver frequency and at maximum output level. With the transmitter unkeyed, the presence of the injected signal from the signal generator should be noted on the rf voltmeter, with only slight attenuation (1.2 to 1.3 dB).

Step 5. Make sure the transmitter is disconnected from the network. Key the transmitter and check the rf voltmeter reading.

Step 6. The rf voltmeter reading should drop at least 60 dB (a voltage reduction of 1000 times). If receiver 20 dB quieting is used as a reference, the rf signal generator level would have to be 1000 times greater than the normal 20 dB quieting, or approximately 500 microvolts.

Step 7. If the isolation is less than 60 dB , replace the antenna network. See the removal and reinstallation procedure (paragraph 6.6.2).

Step 8. Disconnect the test equipment. Reconnect the transmitter output cable to the antenna network. Reconnect the fuse that was removed in Step 1.
6.6.2 Antenna Network Removal and Reinstallation Procedure

NOTE
Steps 1 and 2 are performed from the front of the station.

Step 1. All models, except $2 \& 12$-watt models:
-- Disconnect the LOW LEVEL AMP OUT and ANT NETWORK IN connectors from the unified chassis.
-- Loosen the three captivated shield cover screws and remove the cover.
-- Loosen the captivated screw that holds the ANT NETWORK IN receptacle bracket and remove the receptacle from its mounting bracket.

Step 2. $2 \& 12$-watt models only:
-- Loosen the two captivated power amplifier assembly screws on the PA heatsink.
-- Pivot and lift the PA assembly up and off the pivot bushing and simultaneously disconnect the following connectors:

- power plug from PA receptacle (J 1001) on transmitter interconnect board.
- tripler plug from low-level amplifier output receptacle on tripler/low level amplifier.
- PA output plug from antenna network.

The PA assembly is now completely disconnected from the unified chassis and can be placed to one side while antenna network removal is completed.

NOTE

The following steps are performed from the rear of the station.

Step 3. Base stations only -- Disconnect the receiver output coaxial cable from the antenna network heatsink.

Step 4. Disconnect the antenna output coaxial cable from the antenna network heatsink.

Step 5. Loosen the two captivated antenna network mouinting screws (on heatsink).

Step 6. Carefully slide the antenna network out of the unified chassis.

Step 7. To reinstall the antenna network, reverse the procedure given in Steps 1-6.

7. RECEIVER MAINTENANCE

7.1 GENERAL

The following paragraphs provide maintenance shop type procedures for the individual receiver circuits in the station. After preliminary tests have localized the trouble to the particular area, use these bench tests, which include measurements with built-in station metering or a Motorola portable test set, for testing and troubleshooting.

IMPORTANT

If the POWER SET control ONLY is used to reduce the rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore the rf power to its rated level.

7.2 RF AND I-F BOARD MAINTENANCE

CAUTION

Do not remove the channel element by exerting force through the hole provided for access to the channel warp capacitor. Excessive pressure will damage the capacitor. A small access hole is provided adjacent to the one for channel warp adjustment. Use a tuning tool (Motorola Part No. 66-84387C01) to push out element.
The following paragraphs provide maintenance procedures for the receiver rf and i-f board. These procedures consist of tests which include metering measurements, testing, and troubleshooting procedures which include integrated circuit checks.

NOTE

The receiver rf and i-f board must be installed in a receiver for testing to provide the necessary power, ground, control and signal connections. The board should always be secured in place with all mounting screws for operation and testing to provide a good rf ground to all stages of the receiver. The board may be installed in the station or a "Micor"' mobile radio set for testing.

7.2.1 Performance Tests

Use the following tests to determine if the receiver rf and i-f board is operating properly. If either of the tests produces unsatisfactory results, refer to the receiver rf and i-f troubleshooting chart in this section for a procedure to isolate the defective stage.

7.2.1.1 No-Signal Meter Reading Check

7.2.1.1.1 General

A failure in almost any part of the rf and i-f board will result in an improper meter reading in one or more of the test positions. Improper alignment will also cause improper meter readings.

Compare the current readings observed in positions 1 through 5 with those in Table 10. A low reading on meter position 1 indicates a defective channel element. A low reading on meter positions 2 or 3 in dicates a defective multiplier circuit. Improper meter 4 or 5 readings indicate a malfunction elsewhere in the receiver; check rf and i-f voltages per the schematic diagram to isolate the malfunction.

Table 10. Minimum Receiver RF \& I-F Meter Readings (No Input Signal Applied)

Selector Switch Position	Reading	Circuit Metered
1	15 uA	Channel element output
2	15 uA	First Doubler output
3	15 uA	Second Doubler output
$4+, 4$	$0 \pm 2 \mathrm{uA}$	Discriminator output
5	10 uA	Second i-f amplifier and limiter

7.2.1.1.2 Input Voltages

If there are no test set indications at one or more of the metered points, check the dc input voltages to the receiver rf and i-f board per Table 11.

Table 11. RF \& I-F Board DC Input Voltages

P904-9	A + continuous (+13.8 V dc with reference to chassis)
P904-11	$9.6 \pm 0.5 \mathrm{~V}$ dc continuous (with reference to chassis)
P904-8	$9.6 \pm 0.5 \mathrm{~V}$ dc continous (with reference to chassis)

If meter indications localize the trouble to a specific stage or two, measure the dc input voltages to the suspected stages. Refer to the schematic diagram for the normal voltages.

7.2.1.1.3 Using the Portable Test Set

Step 1. The receiver rf and i-f board must be installed in a complete receiver for testing. Make sure the rf and i-f board mounting screws are all secure and that all connections to the board are properly made.

Step 2. Be sure the receiver shield is in place.
Step 3. Apply ac input power to the station.
Step 4. Using a TEK-37 Adapter Cable, connect a Motorola portable test set or meter panel to the station as follows:

- Connect the adapter cable 20-pin connector to the receptacle on the front of the test set or meter panel.
- Connect the adapter cable 7-pin red "control" plug to the control receptacle on the unified chassis (J3).
-- Connect the adapter cable 7-pin white "metering" plug to the metering receptacle on the receiver rf and i-f board.

Step 5. Set the portable test set switches as follows:

- Set the function SELECTOR switch to the RCVR position.
-- Set the oscillator METER REVERSING switch to the OFF position.
-- Set the adapter cable SENS switch to the 100 mV position. If the adapter cable has no SENS switch, the unit operates at 100 mV sensitivity all of the time.
-- Set the adapter cable REF A-B switch to position A or position B.

Step 6. Refer to Table 10. Set the FUNCTION SELECTOR switch to the positions called for and observe the test set meter. Note that the meter readings given in Table 10 are minimums.

7.2.1.1.4 Using Built-In Station Metering

Step 1. The receiver rf and i-f board must be installed in a complete receiver for testing. Make sure the rf and i-f circuit board mounting screws are all secure and that all connections to the board are properly made.

Step 2. Be sure the receiver shield is in place.
Step 3. Apply ac input power to the station.
Step 4. Connect the station metering kit "metering" plug to the metering receptacle on the receiver rf and i-f board.

Step 5. Refer to Table 10. Set the FUNCTION SELECTOR switch to the positions called for and observe the meter. Note that the meter readings given in Table 10 are minimums.

7.2.1.2 20 dB Quieting Sensitivity Test

This performance test may be used after repair and alignment to be sure that the receiver meets all specifications before it is returned to service. The receiver shield must be in place while performing this test.

7.2.1.2.1 Using the Portable Test Set

Step 1. Set up the station and portable test set or meter panel as described in paragraphs 7.2.1.1.3 or 7.2.1.1.4.

Step 2. Set the portable test set MULT switch to the 2 V ac position.

Step 3. Set the portable test set FUNCTION SELECTOR switch to position 11 (AUDIO).

Step 4. Set the test set SPKR switch to the LOAD position and disconnect the station speaker to silence it during the test, if desired.

Step 5. On "Private-Line" stations, disable "PL" operation by setting the PL disable switch, (Station Control Module) to the disable position to the right.

Step 6. Adjust the receiver SQUELCH control fully counterclockwise (unsquelched).

Step 7. Adjust the receiver VOLUME control so the test set meter reads 2 V rms.

Step 8. Connect an rf signal generator to the receiver input connector.

Step 9. Adjust the rf signal generator controls as follows:
-- Adjust the rf signal generator to produce a CW or unmodulated signals.
-- Adjust the rf signal generator's output level to
-- maximum.
-- Adjust the rf signals generator's output frequency to the selected channel receive frequency. To adjust the signal generator to the proper frequency, without a frequency counter, adjust the generator frequency control until test set meter position 4. reads exactly zero.

Step 10. With the portable test set FUNCTION SELECTOR switch in meter position 11 (AUDIO), slowly decrease the rf signal generator output level until the test set meter reads 0.2 V rms (20 dB down from 2 V rms). Move the portable test set MULT switch to the 0.2 V ac position if necessary.

NOTE

The output frequency of some signal generators will be "pulled" when the output level is near maximum. It may be necessary to reset the generator frequency , to "zero" meter 4, as the generator output level is reduced.

Step 11. Note the signal generator output level. If the receiver rf and i-f board is functioning properly, this level should be 0.5 uV rms, or less, for a receiver without an rf preamplifier; or 0.25 uV rms or less, for a receiver with an rf preamplifier.

7.2.1.2.2 Using Built-In Station Metering

NOTE
This section substitutes a separate ac voltmeter for the portable test set FUNCTION SELECTOR switch position 11.

Step 1. The receiver rf and i-f board must be installed in a complete receiver for testing. Make sure the rf and i-f board mounting screws are all secure and that all connections to the board are properly made.

Step 2. Be sure the receiver shield is in place.
Step 3. Apply ac input power to the station.
Step 4. Unsquelch the receiver by turning the SQUELCH control fully counterclockwise. A "PrivateLine" station must also be "PL" disabled.

Step 5. Set the range switch on an ac voltmeter to the 2 V ac position and connect the voltmeter across the speaker terminals of the built-in station meter kit. If desired, substitute an 8 -ohm, 15 -watt, non-inductive resistor for the speaker. Adjust the station VOLUME control for 2 volts as indicated on the voltmeter.

NOTE

The built-in station metering kit incorporates a dc voltmeter, not an ac voltmeter.

Step 6. Connect an rf signal generator to the receiver input connector.

Step 7. Adjust the rf signal generator controls as follows:
-- Adjust the rf signal generator to produce a CW or unmodulated signal.
-- Adjust the rf signal generator output level to maximum.
-- Adjust the rf signal generator output frequency to the selected channel receive frequency. To adjust the rf signal generator to the proper frequency, without a frequency counter, adjust the generator frequency control until meter position 4 reads exactly zero.

Step 8. Slowly decrease the signal generator output level until the ac voltmeter reads 0.2 V rms. Move the ac voltmeter range switch to the 0.2 V ac position if necessary.

NOTE

The output frequency of some rf signal generators will be "pulled" when the output level is near maximum. It may be necessary to readjust the generator frequency, to "zero" meter 4, as the generator output level is reduced.

Step 9. Note the signal generator output level. If the receiver rf and i-f board is functioning properly, this level should be 0.5 uV rms, or less, for a receiver without an rf preamplifier, or 0.25 uV rms or less, for a receiver with an rf preamplifier.

7.2.2 Troubleshooting

7.2.2.1 Visual Inspection

The first step in the troubleshooting procedure should be a thorough visual inspection of the receiver and, in particular, the receiver rf and i-f board. Corrosion, burned or damaged components are usually easily seen and may be the cause or a symptom of the receiver malfunction. Loose circuit board mounting screws, or a loose or improperly installed receiver shield are other easily found problems that can cause a considerable degradation in receiver performance.

After the "obvious" problems have been corrected, repeat the receiver rf and i-f board performance tests. If the tests still produce unsatisfactory results, refer to the receiver rf and i-f troubleshooting chart in this section. The troubleshooting chart provides a systematic procedure for isolation of the defective stage and component.

As much information as possible has been included on the troubleshooting chart. However, it will be necessary to occassionally refer to the receiver rf and i-f schematic diagram and circuit board detail. Detailed procedures regarding alignment as a troubleshooting technique, integrated circuit and AFC troubleshooting, receiver gain measurements, and crystal dip tests follow in the remaining paragraphs of this section.

7.2.2.2 Alignment as a Troubleshooting Technique

Low meter readings, improper discriminator output, and otherwise abnormal performance of the receiver are very often corrected by realignment. Therefore, alignment should be one of the first troubleshooting steps performed for these symptoms.

7.2.2.3 Troubleshooting Integrated Circuits

Integrated circuits (IC) are very reliable components and should not be replaced unless it is definitely indicated that the IC is the defective component. Before replacing an IC, make sure that the external components in the circuit are normal.

The IC on the receiver rf and i-f board may be checked by dc voltage measurements. Proper voltages are shown in Table 12.

Table 12. Nominal Receiver Integrated Circuit DC Voltages
(All readings are in dc volts, measured with respect to chassis ground)

PINNO	U101 VOLTAGE	U102 VOLTAGE	
1	GND	2.8	
2	GND	GND	
3	2.8	2.8	
4	6.6	6.6	
5	9.3	9.3	
6	7.2	7.2	
7	6.4	6.4	
8	2.8	2.8	
9	2.8	2.8	
10	GND	GND	
NOTE: All voltages may vary $\pm 10 \%$ from nominal			
readings shown.			

7.2.2.4 Troubleshooting the AFC

To check AFC operation, perform the following procedure:

Step 1. Connect the Motorola test set (or use built-in metering if so equipped) to monitor discriminator output (meter position 4).

Step 2. Connect an rf signal generator to the receiver input connector. Set up the generator to provide about 100 uV rms of unmodulated signal at a selected receive channel frequency.

Step 3. Insert a screwdriver or other shorting device through the AFC OFF hole in the receiver shield, shorting the plating beneath the hole to the receiver shield. Simultaneously adjust the input signal frequency for a discriminator meter indication of approximately ± 6 uA.

Step 4. Remove the short. The test set meter indication should return to within $\pm 3 \mathrm{uA}$ of zero. If it does not, the AFC is malfunctioning.

Step 5. If the AFC is malfunctioning, either components on the receiver rf and i-f board or the AFC circuitry in the channel element may be defective.
-- The board may be checked by tracing the AFC ervoltage from the discriminator output to the channel element. Performing Step 3 above, and then removing the short, should produce an error voltage of approximately 0.6 V dc (+ or - with respect to chassis ground) when measured with a dc voltmeter, with a minimum of 11 megohms in put impedance. Check for this error voltage at P904-15, P904-14, P904-7 and at the AFC OFF plating near the channel element.

- The AFC circuitry in the channel element may be checked by substituting a known good channel element.

7.2.2.5 Receiver Gain Measurements

A defective crystal in the i-f selectivity portion of the receiver can be located by measuring receiver gain voltages and performing crystal dip tests.

NOTE

Before making any receiver gain measurements, make sure the case of every crystal filter has a good conductive path to ground. A continuity test should indicate less than 1 ohm between the crystal filter case and the receiver circuit board ground plating. A bad ground connection may cause errors in gain measurements.

Step 1. Proper receiver alignment is essential to this procedure portion of the Station Alignment. Perform a complete receiver of and i-f alignment as given in the "Receiver Alignment" section of this manual. Leave the alignment test equipment connected to perform the following measurements.

Step 2. Refer to Table 13 for receiver gain measurements, the receiver rf and i-f schematic diagram, and the receiver rf and i-f circuit board detail diagram while performing this procedure.

NOTE

Receiver rf input voltages given in Table 13 are those at the receiver input connector. If a pad, or other attenuator, is connected between the signal generator and the receiver rf input, the signal generator output control must be set to compensate for losses in the pad.

Examples:

6 dB loss means: V out of the pad $=$ $1 / 2 \mathrm{~V}$ into the pad.

20 dB loss means: V out of the pad $=$ $1 / 10 \mathrm{~V}$ into the pad.

Step 3. Adjust the rf signal generator output frequency to the receive channel frequency (" 0 " reading on meter 4). Adjust the rf signal generator output to provide the required receiver input voltage for a particular test point as listed in Table 13. Then, using an rf ac voltmeter, measure the rf signal voltage between the test point and a nearby chassis ground point. At every test point, the measured voltage should be within $\pm 6 \mathrm{~dB}$ of the given value.

Table 13. Receiver Gain Measurements

TEST POINT (See RF \& IF Circuit Board Detail)	RECEIVER INPUT VOLTAGE rms (preset)	TEST POINT VOLTAGE rms (
A	16 dB	REMARKS	
B	8 mV	100 mV	
C	10 mV	50 mV	
D	15 mV	50 mV	
E	12 mV	50 mV	
F	15 mV	50 mV	
G	10 mV	600 mV	U101 saturated
H		6 mV	100 mV
I	9 mV	10 mV	
J	12 mV	100 mV	
K	11 mV	100 mV	
L	20 mV	100 mV	
M	1 mV	750 mV	U102 saturated
			output

Step 4. A high or low test point voltage measurement may indicate that the crystal at, or ahead of, the test point is defective. However, it may also indicate that an associated circuit component is defective. The extremely high-Q crystals used in "Micor" "Compa-Station" and Upright radios are very sensitive to associated circuit component failure. For example, if L125 is defective, it might appear that Y102 is bad. To isolate the defective component, perform the crystal dip tests described in the following paragraph.

7.2.2.6 Crystal Dip Test

A defective crystal in the i-f selectivity portion of the receiver can be located by measuring receiver gain voltages and performing crystal dip tests.

The monolithic crystals used in "Micor" receivers are made up of two separate resonators on a single quartz blank. Each crystal has a pair of characteristic operating frequencies. One way to find the characteristic frequencies of each crystal is to short the crystal output to chassis ground, then monitor the crystal input voltage with an rf ac voltmeter while varying the rf signal generator frequency, across the bandpass of the receiver. Low voltage points will occur at each of the crystal characteristic frequencies.

Figures 19 and 20 are plots of typical rf ac voltmeter readings obtained while testing good crystals. Note that the horizontal scales are calibrated in frequency , with fo the channel frequency of the receiver. The vertical scales represent relative if ac voltmeter readings. The bottom line is zero and the top line is maximum. Notice that each plot has one sharp minimum point above f_{o} and another below f_{o}. Table 14 lists the frequencies at which these dip points should appear. If the measured dips fall outside the tolerances listed in Table 14, the crystal may be defective.

Step 1. Leave the test equipment connected as was done for the receiver gain measurements.

Table 14. Crystal Dip Frequencies

CRYSTAL	$\begin{gathered} \text { TEST } \\ \text { POINT } \\ \text { GROUNDED } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { POINT } \\ \text { MONITORED } \end{gathered}$	$\begin{aligned} & + \text { FREQUENCY } \\ & \text { DIP }(\mathrm{kHz}) \\ & \pm 2.5 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - FREQUENCY } \\ & \text { DIP }(\mathrm{kHz}) \\ & \pm 2.5 \mathrm{kHz} \end{aligned}$
Y101	C	B	6.0	7.0
Y102	E	D	6.5	6.5
Y103	I	H	6.0	7.0
Y104	K	J	6.5	6.5

Step 2. If the receiver uses AFC, disable the AFC by connecting a jumper between test point " N " (see receiver rf \& i-f circuit board detail diagram) and chassis ground.

Step 3. Adjust the rf signal generator frequency to f_{o}, the receiver channel frequency (" 0 "' reading on meter 4). Adjust the generator output control for at least 50 mV rms at the receiver input connector.

Step 4. Refer to Table 14. To test a particular crystal, find it in the table, ground the indicated test point, and connect an rf ac voltmeter between the monitored test point and a nearby chassis ground point.

Step 5. Starting at fo, slowly increase the signal generator frequency, while watching for a dip in the rf ac voltmeter reading. This dip should be sharp, so increase the signal generator frequency very slowly and watch the rf ac voltmeter closely. When the dip is found, write down the frequency counter reading.

Step 6. Return the signal generator frequency to f_{o}. Then watch the rf ac voltmeter while slowly decreasing the signal generator frequency. When the dip is found, write down the frequency counter reading.

Step 7. Compare the test results with the frequencies and tolerances listed in Table 14 for the crystal tested. If the measured dips fall outside the tolerances listed in the table, the crystal may be defective. Continue with this procedure to isolate the bad component.

Step 8. FOR TEST PURPOSES ONLY, exchange the suspected crystal with another of the same type (part number) from the receiver. Be sure to note the polarity of the crystal when making the change. Repeat the receiver gain measurements and crystal dip tests with the suspected crystal in the new location. If the suspected crystal tests bad again, consider it defective and replace it. If the crystal tests good, look for defective associated components at the original crystal location.

Step 9. When the tests are completed, be sure all jumpers connected during the test are removed and that any exchanged crystals are returned to their original locations. Refer to the parts list and circuit board detail diagram for correct parts location. Note the crystal polarity when replacing the crystals.

7.2.3 Field Conversion to Shifted I-F

A standard 11.7 MHz i-f receiver can be easily converted to operate at the shifted i-f of 11.8 MHz . Replace crystal filters Y101 through Y105 with the 11.8 MHz parts; refer to the receiver parts lists for the TLE8610A Shifted I-F Crystal Kit for the necessary part numbers. Finally, replace the channel element, using the 11.8 MHz i-f formula from the "Receiver" Alignmentportion of the Station Alignment section to calculate the new channel element frequency.

7.3 AUDIO AND SQUELCH BOARD MAINTENANCE

NOTE

The audio and squelch board must be installed in a radio set for testing to provide the necessary power and ground connections.

7.3.1 Performance Tests

The following performance tests may be used for troubleshooting to isolate the point of abnormal operation. They may also be used after repair to be sure that the board is operating properly, before it is returned to service.

7.3.1.1 Audio Amplification

The audio section of the audio and squelch board, combined with the separate audio power amplifier, will provide at least 10 watts audio output, into 8 -ohms, with less than 5% overall distortion, from a 3.0 kHz deviated, 1 kHz modulated, on-frequency signal applied to the receiver input receptacle.

Step 1. Replace the speaker with an 8 -ohm, 15 -watt, non-inductive resistor.

Step 2. Set the SQUELCH control fully counterclockwise (unsquelched). "Private-Line" stations must also be PL disabled by placing the PL disable switch (Station Control Module) to the DISABLE position (to the right).

Step 3. Connect an rf signal generator to the receiver input receptacle and adjust it to the receive frequency.

Figure 20.
Typical Dip Plot of a Known Good Crystal in Position Y102 or Y104

Step 4. Adjust the signal generator for 1.0 mV output, modulated with a 1000 Hz tone at $\pm 5.0 \mathrm{kHz}$ deviation.

Step 5. Connect an ac voltmeter to pin J903-7 on the receiver interconnect board.

Step 6. Adjust LINE LEVEL control R203 for 150 mV rms.

Step 7. Reduce the deviation to $\pm 3.0 \mathrm{kHz}$.
Step 8. Connect an ac voltmeter across the 8 -ohm load resistor.

Step 9. Adjust the VOLUME control until 9.0 V rms is read on the ac voltmeter (this represents 10 watts).

Step 10. Measure distortion at 10 watts audio power output. It should be less than 5%.

7.3.1.2 Squelch Control

7.3.1.2.1 Specifications

Spec 1. The squelch section of the receiver audio and squelch board shall enable the audio section when an rf signal level greater than 6 dB noise quieting (one-half the discriminator output level with no signal input) is applied to the receiver input, with the SQUELCH control set at threshold. When the signal is removed from the station, the audio channel shall become disabled after approximately 150 milliseconds. When an input signal greater than that required for approximately 20 dB noise quieting is removed from the receiver input, the audio channel shall become disabled immediately.
Spec 2. When the SQUELCH control is turned fully clockwise (tight squelch), an input signal that produces approximately 20 dB noise quieting shall be required to enable the audio channel.

Spec 3. The squelch section shall inhibit audio output when no input signal is received.

Spec 4. In "Private-Line"' coded squelch stations, the squelch section of the receiver audio and squelch board shall perform as described in the preceding specification 1 , while the radio station is 'PL"' disabled.

Spec 5. In "PL"' operation, the squelch section shall inhibit audio output when the proper "PL" code is not received, regardless of input signal strength.

7.3.1.2.2 Procedure for Carrier Squelch Stations

Step 1. Turn the station $O N$ and adjust the SQUELCH control clockwise, from the full counterclockwise position until the receiver just quiets (squelch threshold).

Step 2. Measure the resistance of U202-6 and -7 with reference to ground. Both pins should be less than 1000 ohms.

NOTE
Erroneous resistance measurements will be obtained if the voltage between the ohmmeter probes exceeds approximately 5.0 volts dc.

Step 3. Connect a rf signal generator to the receiver input receptacle and adjust it to the receive frequency. Modulate the generator output with a 1000 Hz tone at $\pm 3.0 \mathrm{kHz}$ deviation.

Step 4. Slowly increase the rf signal generator output, until the receiver just unsquelches. Remove the modulation from the signal generator. Unsquelching should occur at a generator output that produces 6 dB noise quieting, or less.

Step 5. Measure the resistances of U202-6 and -7 with reference to ground. Pin 6 should be greater than 100 k ohms and pin 7 should be greater than 45 k ohms.

Step 6. Increase the rf signal generator output until approximately 12 dB noise quieting is obtained. Remove the rf signal from the receiver input, either by turning the generator OFF, or by using a relay in series with the generator output. A long "squelch tail" should occur. If a calibrated, triggered sweep oscilloscope is available for measurement, the duration of the "squelch tail" should be approximately 150 milliseconds, measured at the speaker terminals.

Step 7. Increase the rf signal generator output to produce 30 dB noise quieting. Turn the generator OFF, and note the "squelch tail" duration. It should be no more than a "click". The duration should be less than 10 milliseconds.

Step 8. Turn the SQUELCH control fully clockwise (tight squelch).

Step 9. Adjust the rf signal generator output level until the receiver just unsquelches. Unsquelching should occur at a generator output that produces approximately 20 dB noise quieting.

7.3.1.2.3 Procedure for "Private-Line"' Tone-Coded Stations

Step 1. Disable the "PL" circuitry by placing the "PL"' disable switch (Station Control Module) to the DISABLE position (to the right).

Step 2. Perform the previously described "Carrier Squelch Station Procedure'".

Step 3. Return the station to "PL'" operation. On stations using "AND" squelch operation, also turn the SQUELCH control fully counterclockwise during the following test.

Troueleshootme pereeuustries

TABLE:MiNIMUM RECEIVEA RF \& IF METER READINGS TABLE(NO INPUT SIGNAL APPLIED)		
	$\underset{\substack{\text { Reabinc } \\ \text { mector }}}{\text { End }}$ (M)CR	${ }^{\text {cifeurt }}$
	${ }^{15}$	chandel flemen
2	${ }^{15}$	frisit oubul
3	15	Secono
4	$0: 2$	aisammator
5	${ }^{10}$	

		TABLE III NOMINAL RE (ALL READINGS ARE IN VOLTS DC MEASURED WITH RESPECT TO CRASSI		
$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \text { peonv } \end{array}\right.$	Desccriproren	$\stackrel{\text { RN }}{\text { No }}$	${ }_{\text {Itiol }}$	
peas 9		!	$\substack{\text { civo } \\ \text { GNo }}$	${ }_{\substack{28 \\ \text { cno }}}$
P909.14		4	¢,	
peor 8		$\stackrel{6}{6}$,	c.
		号	$\substack { 28 \\ \begin{subarray}{c}{28 \\ 6 \text { no }{ 2 8 \\ \begin{subarray} { c } { 2 8 \\ 6 \text { no } } } \\{\hline} \end{subarray}$	

Receiver $R F \& I-F$

Step 4. Vary the rf generator output between minimum output and 1.0 mV , while checking the resistances of U202-6 and -7 with reference to ground. Both resistances should remain less than 1000 ohms.

Step 5. Modulate the on-frequency rf generator output with a "PL" tone for ± 0.5 to $\pm 1 \mathrm{kHz}$ deviation, and a 1000 Hz tone for $\pm 3.0 \mathrm{kHz}$ overall deviation.

Step 6. Slowly increase the rf signal generator output until the receiver just unsquelches. Unsquelching should occur at a generator output that produces 6 dB quieting, or less.

7.3.2 Troubleshooting

7.3.2.1 Check Input Voltages

A malfunction in the audio and squelch board operation may be due to the loss of dc input voltages, which can be caused by the board or another section of the station. Since there are only two dc input voltages applied to the board, it is advantageous to verify their presence before beginning extensive troubleshooting, refer to Table 15.

Table 15. Audio \& Squelch Board DC Input Voltages

P903-4	+9.6 V dc with respect to chassis gnd
P903-16	Audio $\mathrm{A}+$ (approximately +13.6 V dc with respect to A-)

NOTE
In a negative ground system, audio A- is chassis potential. In a positive ground system, audio A+ is chassis potential.

7.3.2.2 Isolating Defective Components

If tests indicate abnormal performance, a logical troubleshooting procedure should be followed to efficiently isolate the defective component. Results of performance tests usually localize the malfunction to one or two stages. The receiver audio \& squelch troubleshooting chart summarizes these results in a logical sequence. A waveform analysis (with voltage and resistance checks) in the suspected circuit, should readily isolate the defective component, when compared with those on the schematic diagram.

7.3.2.3 Troubleshooting Integrated Circuits

Integrated circuits (IC) are very reliable components and should not be replaced until all checks have definitely proven that the IC is the defective component. Make sure that the external components in the circuit are normal. The IC on the audio and squelch board may be checked by dc voltage measurements, although signal tracing with an oscilloscope is preferred.

7.3.2.4 Squelch Circuitry Stage Gain Measurements

This troubleshooting procedure may be used to isolate a squelch malfunction, occurring before the detector, to a specific stage. The test is performed by injecting an ac signal at the input to the squelch circuitry and noting results obtained with an ac voltmeter. Most accurate results are obtained by taking dB gain and loss measurements between certain points, as illustrated in Figure 21. Individual point voltage checks may also be used to quickly verify proper squelch input circuitry operation, but this is not an adequate test to prove the circuitry is defective (refer to Table 16 and Figure 21). Tolerance addition may cause increasing variation from the typical readings in the table, as readings are taken further from the injected signal point.

The following procedure may be used for gain and loss (or signal level) measurements, while injecting a 3 kHz or 30 kHz signal. In "Private-Line" tone coded squelch stations, "PL" operation will not affect this test.

Step 1. Turn the VOLUME control fully counterclockwise (OFF), or to a comfortable listening level, if desired.

Step 2. Turn the SQUELCH control fully clockwise (squelched), and turn the station ON,

Step 3. Inject a 1.0 mV , on-channel signal, at the receiver input receptacle. This "quiets" the discriminator output and prevents erroneous test readings.

Step 4. Inject a $3 \mathrm{kHz}, 10 \mathrm{mV}$ rms signal into the receiver audio and squelch board, at P903-9.

Step 5. Take gain and loss (or signal level) measurements, as required (refer to Figure 21 and Table 16).

Step 6. Repeat the preceding test using a 30 kHz signal in place of the 3 kHz signal in Step 4.

7.3.2.5 Audio Circuitry Stage Gain Measurement

AC voltage measurements and waveforms are given, where applicable, on the schematic diagram. Refer to that diagram, and Figure 21 for pertinent information when making audio stage gain measurements.

7.4 AUDIO POWER AMPLIFIER MAINTENANCE

7.4.1 Performance Checks

Performance checks on this board consist of taking resistance measurements between the transistor elements. It should be noted, however, that some

Table 16. Squelch Integrated Circuit AC Measurements and Stage Gain

Connect AC Voltmeter to IC202-Pin	3 kHz Input Signal		30 kHz Input Signal	
	AC Voltage (mV rms)	Gain or Loss from Previous Reading	AC Voltage (mV rms)	Gain or Loss from Previous Reading
P903-9	10.0		10.0	Reading
15	3.5	9 dB loss	9.5	
1	40.0	21 dB gain	110.0	21 dB gain
2	7.0	15 dB loss	85.0	2 dB loss
3	80.0	21 dB gain	950.0	21 dB gain
4	14.0	15 dB loss	750.0	2 dB loss

Table 17. Transistor Resistance Measurement Chart
(Audio PA removed from station - Transistors mounted on board)

Ohmmeter Connections		Proper Resistance	
Positive Lead Connected To	Negative Lead Connected To	PNP Transistor	NPN Transistor
Base	Emitter, then Collector	Base	Infinite

multimeters have insufficient voltage at the ohmmeter test probe tips to forward-bias a transistor junction and cannot be used. A volt-ohm-milliammeter (VOM) with 1000 to 20,000 ohms-per-volt sensitivity is required for these checks. Compare measured resistance readings with those in Table 17.

NOTE

Do not insert meter test probe tips into female connectors on the board. To do so could damage the connectors and result in poor electrical interconnection with the audio and squelch board.

7.4.2 Transistor Replacement

Care must be exercised to prevent damage (such as a scratch) to the mounting plate anodizing material at the transistor-mounting plate interface. Should the anodizing in this area become scratched, original performance can only be restored by the use of a new anodized plate. The plate can not be "repaired" by the use of any type of insulating washer without a loss in thermal conduction capability.

Factory replacement transistors are supplied with pre-formed leads to properly fit onto the anodized aluminum mounting plate and circuit board. A new nylon shoulder washer is included to insulate the transistor mounting screw from the transistor heatsink.

Step 1. Apply a thin, even coat of silicon grease to the metallic area of the transistor.

Step 2. Mount the transistor using the new nylon shoulder washer. Do not solder leads at this time. Tighten the transistor mounting screw.

NOTE

Do not damage the transistor by over tightening the mounting screw. Tighten the mounting screw until it just "touches" the nylon shoulder washer. Then turn the mounting screw $1 / 4$ turn more.

Step 3. Solder transistor leads to printed circuit board.

ifem	$\begin{aligned} & \text { TYPICAL } \\ & \text { VALUE } \end{aligned}$	$\begin{gathered} \text { FACTORY } \\ \text { (EST } \\ (\text { Note 1) } \end{gathered}$	$\begin{aligned} & \hline \text { DATE } \\ & \text { WHEN } \\ & \text { PLACED } \\ & \text { IN } \\ & \text { SERVICE } \\ & \hline \end{aligned}$	$\underset{\text { CHECK }}{\substack{15 T}}$ DATE	2 ND CHECK DATE	${ }^{3 R D}$ CHECK DATE	${ }_{4}{ }^{4} \mathrm{H}$ date	${ }^{5} \mathrm{CHEC}$ date	${ }^{67 \mathrm{TH}}$ CHECK
Transmitter Output Power	$\underbrace{\text { Seble I }}_{\text {See }}$								
Transmitter Deviation: With $1000 \mathrm{~Hz} @ 1$ volt modulation With PL tone-coded modulation	$\begin{aligned} & \neq 5 \mathrm{kHz} \\ & 0.5 \text { to } 1 \mathrm{kHz} \end{aligned}$								
Receiver 20 dB Quieting Level (less preampl or 2 -wire coupler)									
Exaiter Audio Input Level (XCTR LEVEL):	$\frac{\text { Note } 3}{\text { Note } 3}$								
- Repeater Level, if if applicable	${ }^{\text {Note }} 3$								
notes: 1. Enter data from factory test tickets p 3. Refer to the Installation \& Adjustmen			ent. to. 0002% set up proc	$\begin{aligned} & \text { Refer to } \\ & \text { typical va } \end{aligned}$					

Chasis METERED	$\begin{aligned} & \begin{array}{l} \text { METER } \\ \text { SWITCH } \\ \text { SWSTIIN } \end{array} \\ & \hline \end{aligned}$	function	TypICAL READING	$\begin{aligned} & \text { FACTORY } \\ & \text { TEST } \\ & \text { (Note 2) } \end{aligned}$	$\left\|\begin{array}{l}\text { DATE When } \\ \text { PLACED } \\ \text { SERIICE }\end{array}\right\|$	${ }_{\text {CHECK }}$ date	$\underset{\substack{\text { CHECK }}}{\text { CND }}$ $\begin{aligned} & \text { DATE } \\ & \hline \end{aligned}$	${ }^{3 R D}$ DATE	$\begin{aligned} & \text { 4TH } \\ & \mathrm{CHECK} \\ & \mathrm{DATE} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \text { CTHECK } \\ & \text { CHE } \end{aligned}$ Date	6TH CHEKK Date
Receiver	$\begin{aligned} & 11 \\ & \frac{1}{2} \\ & 4-\text { and } \end{aligned}$										
XCTR	$\begin{aligned} & 1 \\ & \hline \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	1st Doubler Input Exciter Output									
$\underset{\substack{\text { PowER } \\ \text { AMPL }}}{ }$	$\frac{1}{2}$	$\begin{array}{\|l\|l} \hline \text { Driver Current (} 75 \mathrm{~W} \text { att } \\ \text { Only } \\ \text { PA Current } \\ \text { 1st Stage Voltage } \\ \hline \end{array}$									
POWER ControL	1 2 2 5	Forward Output Power Reflected Power Control Voltage									
NOTES: 1. On m 2. Enter 3. Readi 4. The " 5. See th		ncy stations, repeat test ctory test tickets provide 1 uA or less. If measur ransmitter alignment p			nt. n-channel sign of the manual for		$\begin{aligned} & \text { ut recep } \\ & \text { nput. } \end{aligned}$	ical re	aine		

maintenance log sheet
frequency range/power our met

B/C64RCB

1. $470-512 \mathrm{MHz}$ models should be set for indicated power output or less depending All frequency ranes. - power output should be measured at the output of this antenna
etwork using one foot or less of coaxial cable between the wattmeter and antenna

Servicing notes \& historical notes

TRANSMITTER INTRODUCTION

The station transmitter, illustrated in the following sections, is shown as a block diagram in Figure 1. The transmitter incorporates either an integral PA in the 2-, or 12 -watt stations, or a separately racked PA in the 20 -, 40/45-, 45-60/75-, or 75-Watt stations.

The transmitter operates in the UHF frequency band ($406-512 \mathrm{MHz}$) on one of four FCC assigned frequency ranges:

$$
\begin{aligned}
& \text { - 406-420 MHz; } \\
& \text { - 450-470 MHz; } \\
& \text { - 470-494 MHz; and, } \\
& \text { - 494-512 MHz. }
\end{aligned}
$$

Transmitter alignment and maintenance is detailed under the Station Data Tab, at the front of this manual. Transmitter cabling is detailed on the Typical Station Layout diagram (PEPS-28289) under the Station Data Tab. Transmitter electrical and/or mechanical parts lists, circuit board details, and parts location photographs accompany the applicable schematic diagram in the following sections.

Figure 2 shows connections between the power control board and other transmitter circuits. These connections are made via the transmitter interconnect board as indicated.

BEPS-27763-A

Figure 1. Transmitter Block Diagram

Figure 2. Power Control Board Connections to Transmitter Interconnect Board

TRANSMITTER
INTERCONNECT BOARD MODEL TLN5645A (RPTR)

Inerconnects most ransmiter circuit boards to eacil - Routes control functions from the unified chassis Repeater version includes unique transmiter filtering
components. - Includes sartial control satage circuitry used to goveri
PA power utput. -Incudeds current limiter stsage (bases stations only)
which is clectricilly functional with antenna network.

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

PARTS LIST

TRANSMITTER INTERCONNECT BOARD
TLN5645A (repeater station)

OTES

1. Replacement diodes and transistors must be ordered by

Replorinance.
2. The following items are not used with Modet TLN5645A Capacitors C9, 1, 11, 17, 18, 19, 34, $35,36,42,4$ 44, 902, 903, and 904; Coils L9, 10, 11, 23, 24,
902,903 , and 904; Resistors R903, 904, and 905.
The following items are not used with Model TLN5647 Capacitors Cl-50: Coils Ll-25.

REFERENC
SYMBOL
MOTOROLA
PART NO. description

Tranamitter Shield
(Repeater or Full Filtering)
TLE $4181 \mathrm{~A}(406-420 \mathrm{MHz}$)

		PL-6435-O
	3-139495	SCREW, tapping: 6-20*5/16 ${ }^{1 \prime}$; 5 used
	26-82875K01	SHIELD; (TLEA183A)
	26-82832K01	Shield; housing (tlealiala)

䢒

1. INTRODUCTION

The Model TLE1720B series exciter/1st bandpass filter, and the Model TLE1600B series tripler/low level amplifier, provide low power excitation for an FM transmitter. Up to four plug-in channel elements, one for each transmitter operating frequency, are used to develop a direct FM carrier signal. Table 1 lists the models available per frequency range.

Table 1. Model Usage

Frequency Range	Exciter/1st Bandpass Filter	Tripler/Low Level Amplifier
$406-420 \mathrm{MHz}$	TLE1721B	TLE1601B
$450-470 \mathrm{MHz}$	TLE1723B	TLE1603B
$470-494 \mathrm{MHz}$	TLE1724B	TLE1604B
$494-512 \mathrm{MHz}$	TLE1725B	TLE1605B

The exciter is directly frequency-modulated (direct FM) for crystal-controlled frequency operation in the $132-174 \mathrm{MHz}$ range. It consists of a symmetrical clipper and splatter filter, emitter follower, channel element(s) (voltage controlled crystal oscillator), buffer amplifier, tripler, first doubler, second doubler, and output amplifier. The fundamental crystal frequency is multiplied by twelve to provide an input to the tripler/low level amplifier, through the 1st bandpass filter, which develops the final output frequency and provides additional amplification of the rf signal. Table 2 gives the technical characteristics of the exciter/1st bandpass filter and tripler/low level amplifier.

[^2]
2. FUNCTIONAL OPERATION

Refer to the exciter block diagram (Figure 1) and the exciter/1st bandpass filter and tripler/low level amplifier schematic diagrams at the end of this section.

2.1 DEVIATION LIMITING CIRCUIT

Microphone output audio is applied to the symmetrical clipper and splatter filter. This circuit, together with amplifier U401, provides pre-emphasis, amplification, and limiting of the microphone audio. Microphone audio is then applied to emitter follower Q401 (together with "PL" code), through IDC control to the channel element(s).

The output of the emitter follower is developed across IDC potentiometer R410. This audio signal can be monitored at pin 1 of the exciter metering receptacle. The potentiometer adjusts the maximum level of audio coupled to the oscillator-modulator, thus setting the amount of deviation.

In "Private-Line" radios, a low amplitude "Private-Line" code is continuously injected into the oscillator-modulator from the "Private-Line" encoder. This code range will produce 0.5 to 1.0 kHz deviation.

2.2 MODULATOR-OSCILLATOR STAGE (CHANNEL ELEMENT)

Channel elements are highly stable crystal-controlled oscillators. They use unheated crystals in an oscillator circuit that is temperature compensated over the entire temperature range of -30° to $+60^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $+140^{\circ} \mathrm{F}$). A variable warp capacitor in the base of each channel element is accessible through a hole in the exciter circuit board for fine frequency adjustment. Each channel element is a factory sealed, plug-in module which provides a train of frequency stable, positive going, pulses.

Figure 1. Exciter Block Diagram

The combination modulator-oscillator stage (channel element) consists of a parallel combination varactor and warping capacitor connected in series with a crystal. A change in capacitance seen at the crystal terminals will cause the crystal to vary its resonant frequency in proportion to the capacitance change. The audio voltage from the audio and IDC circuitry is applied to the varactor to cause a change in capacitance; this variation in turn causes the frequency to change at the same audio rate, creating a direct FM carrier.

This signal is multiplied twelve times and amplified in following stages to produce the input for the tripler/low level amplifier.

The exciter accepts up to four channel elements one channel element is required for each frequency. Only one frequency may be selected at a time, but transmissions are possible on as many as four separate frequencies. A power input of +9.6 volts is applied to the channel element(s) continuously while the station is turned ON. Channel element output is developed only when a switched ground generated by the local or remote control unit is present. In multi-frequency transmitters, this switched ground is applied to a specific channel element as determined by the frequency selector switch associated with the station. An indication of the channel element output is available at pin 2 of the metering socket. This allows channel element operation to be easily checked with built-in station metering or with a Motorola portable test set.

NOTE

If station is equipped with a time-out timer module and the timer times-out, keyed A - is removed from the modulatoroscillator(s) and the entire transmitter is shut down.

2.3 BUFFER AMPLIFIER

The buffer amplifier, Q404, is biased to operate as a Class A amplifier and provides reserve gain which isolates the modulator-oscillator from the succeeding stages.

2.4 MULTIPLIERS AND EXCITER OUTPUT AMPLIFIER

On the exciter board the multipliers develop an output signal that is 12 times the channel element frequency and a final power amplifier gives power gain and matches the output impedance to 50 ohms.

The buffer amplifier output is developed across two parallel resonant tank circuits at the channel element frequency. Tripler Q405 operates as a Class C amplifier with its parallel resonant output tuned to the third harmonic of its input. Thus the output of the tripler is three times the channel element frequency. A meter connected at pin 3 of the metering receptacle measures the average dc base current which is proportional to input signal strength.

The first doubler circuit operates very similar to the tripler except its output is tuned to the second harmonic of its input and its drive is metered at pin 4. The output of the doubler is six times the channel element frequency.

The second doubler circuit also operates similar to the tripler with its output tuned to the second harmonic of its input. The drive to the second doubler is metered on pin 5 of the metering receptacle. The output signal is 12 times the channel element frequency and is the input to the tripler/low level amplifier.

Table 2. Exciter/1st Bandpass Filter \& Tripler/Low Level Amplifier Technical Characteristics

Number of Channels	1 to 4
Maximum Frequency Separation	$\pm 750 \mathrm{kHz}$
Oscillator Frequency	$11-14.5 \mathrm{MHz}$
Frequency Multiplication	12 times (36 times with tripler/low level amplifier)
Output Power	400 milliwatts (nominally 1-2 watts out of low level amplifier)
Output Impedance	50 ohms
Modulator Type	Direct FM
Deviation	$\pm 5 \mathrm{kHz}$, adjustable instantaneous deviation limiting
Audio Response	$6 \mathrm{~dB} /$ octave pre-emphasis 300 to 3000 Hz
Audio Sensitivity	165 millivolts for $\pm 3.0 \mathrm{kHz}$ deviation
Audio Distortion	Less than 3\% at $\pm 3.0 \mathrm{kHz}$ deviation from 300 to 3000 Hz
Power Requirements	Regulated +9.6 volts dc @ $150 \mathrm{~mA}+13.6$ volts dc @ 100 mA
Construction	Fully solid-state
Metering	Five test points critical to operation and alignment are accessible at a metering receptacle
	which permits testing with built-in station metering, Motorola portable test set, or

The exciter output amplifier also operates as a Class C power amplifier. This amplifier provides at least 400 milliwatts of frequency modulated signal as the input to the tripler/low level amplifier, through the 1st bandpass filter.

2.5 TRIPLER/LOW LEVEL AMPLIFIER

This sealed unit amplifies and triples the exciter output ($135-171 \mathrm{MHz}$ range) to produce an output in the $406-512 \mathrm{MHz}$ range. The output power produced is nominally 1-2 watts; which drives the following power amplifier.

3. EXCITER ALIGNMENT

If a portable test set is used during the following Exciter Alignment Procedure, the metering plug will be inserted into the Exciter Metering Receptacle. Set the OSCILLATOR \& METER REVERSING switch to the OFF position, and set the REF A/B switch (on the metering adapter cable plug) to A. If using built-in station metering, turn the metering select switch to the EXCITER quadrant.

Perform the Exciter Alignment Procedure as given in Table 3. Figure 2 illustrates the physical locations of the exciter coils and controls. Figure 3 is a graph giving the number of turns necessary to preset coils L407 and L408.

Figure 2. Exciter Adjustment Locations

Figure 3. Exciter Tuning Coil L407 \& L408 Preset

Table 3. Exciter Alignment Procedure

Step		Adjust		Selector Switch Position

4. EXCITER MAINTENANCE

NOTE

Abstract

Exciter board must be installed in transmitter for testing to provide necessary power, ground, control and signal connections. Circuit board should always be secured in place with all mounting screws for operation and testing to provide good rf ground to all stages of exciter. Exciter should be tested while installed in the station--usually preferred method. However, if desired, it can be bench tested in VHF ($132-174 \mathrm{MHz}$) "Micor" mobile radio, except that timeout timer is inoperative.

4.1 METERING

The exciter is equipped with a metering receptacle which allows five major test points to be measured. The output of the exciter is measured on meter position 5 . With the built-in station metering, or by using the portable test set connected to the metering receptacles, readings may be made at each of the major test points in the circuit. A failure in almost any portion of the exciter will produce a low or zero meter reading for one or more of the test points. Improper alignment will also cause improper meter readings.

NOTE

An isolation network is an antenna network used to isolate "low level', power amplifier output from final power amplifier input.

4.1.1 Using the Built-In Station Metering

Step 1. The output of the exciter must be terminated into its normal point, the first bandpass filter. The output of the station, through the isolation network, must be terminated in a 50 ohm, non-reactive, dummy load or an antenna.

Step 2. Plug the metering plug into the exciter metering receptacle.

Step 3. Turn the station ON.
Step 4. Set the selector switch on the built-in station metering kit to the EXCITER quadrant, position 1. Key the transmitter and whistle into the microphone long enough to observe the meter reading.

Step 5. Set the selector switch to positions 2, 3, 4 and 5 respectively, keying the transmitter and observing the meter readings for each position (whistling not required). An analysis of the meter readings to determine whether each circuit is good or bad follows in the "Performance Tests" paragraph.

4.1.2 Using the Portable Test Set

To make the measurements using a portable test set, the portable test set must be connected to the station as listed in the following procedure.

Step 1. Connect the 20 -pin plug of the test set adapter cable to the test set. When the test set is not in use, disconnect the 20 -pin plug to conserve battery life. The plug acts as an ON-OFF switch, completing the battery circuit.

Step 2. Connect the red "control" plug of the adapter cable to the control receptacle on the unified chassis interconnect board. Connect the white "metering" plug of the adapter cable to the metering receptacle on the exciter circuit board.

Step 3. Set the FUNCTION SELECTOR switch of the portable test set to the XMTR position.

Step 4. Set the OSCILLATOR and METER REVERSING switch of the test set to the OFF position.

Step 5. Set the $1 \mathrm{~V} / 100 \mathrm{mV}$ switch on the adapter cable to the 100 mV position (TEK-37). On the later version adapter cable (TEK-37A), the switch is omitted and the unit always operates at 100 mV sensitivity.

Step 6. Set the REF A-B switch on the adapter cable to position A.

Step 7. The output of the exciter must be terminated into its normal point, the first bandpass filter. The output of the station, through the antenna isolation, must be terminated in a 50 ohm, non-reactive, dummy load or an antenna.

Step 8. Turn the station ON.
Step 9. Connect a microphone to the microphone receptacle on the portable test set or to the unified chassis interconnect board.

Step 10. Set the selector switch of the test set to position 1. Using the push-to-talk switch on the microphone, key the transmitter and whistle into the microphone long enough to observe the metering reading.

Step 11. Set the selector switch to positions 2, 3, 4, and 5 respectively, keying the transmitter with the XMTR ON pushbutton on the test set or the push-to-talk switch on the microphone and observing the meter reading for each position. An analysis of the meter readings to determine whether each circuit is good or bad follows in the "Performance Tests"' paragraph.

Each time maintenance is performed on the exciter, the readings should be compared with the previous set of readings. Any degradation of performance will
quickly be noted. Often, a lower reading may indicate an impending failure and corrective action may be taken before the circuit fails entirely. The minimum values given in Table 4 may be used if no previous readings are available. However, these readings are an absolute minimum for normal operation and are no substitute for a log kept of meter readings. A typical exciter may have much higher readings and should not be allowed to drop to these minimum values before corrective action is taken. If a \log is maintained, even small drops in meter readings will be noticed. This condition should be interpreted as abnormal operation and corrective action taken (such as realignment) to assure continued peak performance.

4.2 PERFORMANCE TESTS

The following performance tests may be used for troubleshooting to isolate the point of abnormal performance. They may also be used after repair and alignment to assure that the exciter meets all specifications before it is returned to service.

4.2.1 Power Output Test

The exciter shall provide at least 400 milliwatts rf output on $1 / 3$ of the assigned frequency.

Step 1. Configure the equipment as connected in the "Metering" paragraph, (connect the "metering'’ plug to the exciter metering receptacle).

Step 2. Set the selector switch to position 5. This checks the output of the exciter. Key the transmitter and observe the meter indication. A meter reading of at least 20 uA equals an rf signal level of 400 milliwatts.

4.2.2. Frequency Test

The carrier frequency output of the transmitter shall be within $.0002 \%$ of the assigned carrier frequency.

Step 1. Terminate the isolation network in an antenna and measure the radiated signal with a Motorola digital frequency meter and deviation monitor or other highly accurate frequency measuring device $(\pm .00005 \%$ or better) when the transmitter is keyed in the following steps.

NOTE

Do not use push-to-talk switch on microphone, as background noise will modulate signal. Use XMIT switch on Station Control Module.

Step 2. Key the transmitter to produce an unmodulated carrier signal. In tone-coded "Private-Line" stations disable the "Private-Line" encoder by unplugging the "Vibrasender" resonant reed. In digital-coded "Private-Line" stations, disable the "Private-Line" encoder by shorting the PL disable pin (J701) to ground (J702).

Step 3. Read the transmitter carrier frequency output.
Step 4. If adjustment is required, set the "warp" capacitor on the channel element for the assigned carrier frequency output. For best accuracy, the station should be brought to room temperature ($+70^{\circ}$ to $75^{\circ} \mathrm{F}$) and the test equipment thoroughly warmed up. This brings the channel element to the center of its temperature compensation range. Once calibrated at this temperature, it can most accurately compensate for future temperature changes.

4.2.3 Deviation Test

The exciter output shall deviate $\pm 5 \mathrm{kHz}$ with an audio input of 1 V rms at 1 kHz . In "Private-Line" stations, the exciter output shall deviate 0.5 to 1 kHz with "Private-Line" modulation applied.

Step 1. Terminate the isolation network in an antenna and measure the radiated signal with a deviation meter.

Step 2. In "Private-Line" stations, re-enable PL, which was disabled in the previous test. Key the transmitter with only "Private-Line" tone modulation. The deviation meter should indicate 0.5 to 1 kHz .

Step 3. Connect an audio oscillator output to pins 12 and 19 on the exciter board. Adjust the audio oscillator to 1 kHz and 1 V rms (measured on an ac voltmeter). The deviation meter should indicate $\pm 5 \mathrm{kHz}$ deviation.

Table 4. Typical Exciter Meter Readings

Selector Switch Position	Reference Switch Position (Test Set Only)	Reading	Circuit Metered	If Low, The Defective Circuit Is
1	A	2 uA (no mod) $10 \mathrm{uA}(120 \mathrm{mV}$ audio at Mic input)	Audio output of IDC circuit	IDC circuit
2	A	25 uA	Channel element output	Channel element
3	A	38 uA	Tripler input	Modulator or Tripler
4	A	15 uA	1st doubler input	Tripler or 1st doubler
5	A	20 uA	Exciter output	1st doubler, 2nd doubler or amplifier

Step 4. Adjust the audio oscillator over the entire 300 to 3000 Hz range, keeping the audio level at approximately 1 V rms. The deviation meter should never exceed $\pm 5 \mathrm{kHz}$, nor drop below $\pm 2.5 \mathrm{kHz}$.

4.2.4 Audio Sensitivity Test

An audio input of 120 mV rms at 1 kHz shall produce approximately $\pm 3 \mathrm{kHz}$ deviation.

Step 1. After completion of the deviation test, reduce the output of the audio oscillator to 120 mV rms at 1 kHz .

Step 2. The deviation meter should indicate approximately $\pm 3 \mathrm{kHz}$. Position 1 meter reading should be noted at this time for future reference. Future audio sensitivity checks may then be made by comparing the meter 1 reading with the noted value.

4.3 TROUBLESHOOTING

4.3.1 Check Input Voltages

If there are no meter indications at one or more of the metered points, check the dc input voltages to the exciter circuit board, which are given in Table 5.

Table 5. Exciter DC Input Voltages

P902-11 \& 13	+9.6 volis with respect to chassis.
P902-6	Keyed A- (approximately -13.6 volts with respect to $A+$, pin 7) when keyed.

If meter indications localize the trouble to a specific stage or two, measure the dc input voltages to the suspected stages. Refer to the schematic diagram for the normal voltages.

NOTE

In "Private-Line" stations, transmitter cannot be keyed if PL encoder is removed, unless jumper (JU401) is connected from pin 8 to pin 10 of the exciter to complete keying circuit. This jumper is permanently connected in exciters used in carrier squelch operation.

4.3.2 Alignment as a Troubleshooting Technique

Low meter readings, low power output, and subnormal performance are very often corrected by realignment. Therefore, alignment should be the first troubleshooting step performed for these symptoms. Many technicians prefer to use alignment as the first troubleshooting step in all cases. During the alignment procedure, any trouble caused by a defective component will be discovered and corrected before alignment can be completed.

4.3.3 Isolating Defective Components

If meter readings are abnormal or tests indicated subnormal performance, a logical troubleshooting procedure is required to isolate the defective component efficiently. The meter readings and results of performance tests usually localize the malfunction to one or two specific stages. A zero meter reading indicates either (1) no drive from the preceding stages, or (2) a defective component in the metering circuit which includes the base-emitter junction of the following transistor which operates as a rectifier. The accompanying troubleshooting chart summarizes these results in a logical sequence. A few voltage and resistance checks in the suspected circuit should readily isolate the defective component. Note that the final amplifier stage of the exciter is powered by A+ and keyed A-. Therefore, voltages should be checked with respect to keyed A-, instead of chassis ground.

5. TRIPLER/LOW LEVEL AMPLIFIER MAINTENANCE

5.1 PERFORMANCE TEST

NOTE

Field servicing of tripler/low level amplifier should not be attempted. If tripler/low level amplifier is defective, replace entire unit. Removal and replacement is described following performance testing.

Step 1. Disconnect PA input cable from Final PA input (J901) and isolation network output (J1012).

Step 2. Connect a UHF-rated wattmeter to J1012, with less than 6 inches of RG58/U cable or less than 1 foot of RG8/U cable. The jumper cable must have a type " N " male connector on each end. The wattmeter must be terminated in a 50 ohm, non-reactive, dummy load.

Step 3. Disconnect coaxial cable from tripler/low level amplifier output (J551). Disconnect "low level" PA output (P502) from isolation net work input (J1011). Connect J551 to J1011 with a short BNC-to-BNC adapter cable.

Step 4. Key transmitter and measure tripler/low level amplifier power output. Wattmeter indication should be at least 0.8 watt. If a minimum of 0.8 watt cannot be obtained, connect a short phono-to-BNC adapter cable between the 2nd bandpass filter output (J553) and J1011. Key transmitter and measure power output, Wattmeter indication should be at least 0.08 watt.

Step 5. If a minimum of 0.08 watt cannot be obtained, measure EXCITER, meter position 5 . Meter 5 indication should be at least 15 uA . (REF A/B switch on TEK-37A Portable Test Set Adapter Cable is set to B.)

If meter 5 indication is low, exciter is defective. If meter 5 indication is 15 uA or greater, tripler/low level amplifier is defective (low power output). Also, check all rf cable connectors and both bandpass filters.

5.2 TRIPLER/LOW LEVEL AMPLIFIER REMOVAL \& REINSTALLATION

NOTE

All steps performed from front of station.

5.2.1 \quad 450-512 MHz Models Only

Step 1. Disconnect coaxial cables (W500, W501 \& W502) connecting "low level" PA to tripler/low level amplifier output (J551) and isolation network input (J1011).

Step 2. Loosen three captivated shield cover screws and remove shield cover.

Step 3. Loosen captivated screw holding tripler/low level output receptacle bracket and remove bracket (with receptacle J551 mounted on bracket).

Step 4. Disconnect tripler/low level amplifier power plug from receptacle J1003 on transmitter interconnect board.

Step 5. Loosen four captivated screws holding tripler/low level amplifier in place.

Step 6. Carefully pull tripler/low level amplifier part way out and then disconnect its input (P551), connected to output of 1st bandpass filter (J452). Tripler/low level amplifier is now completely disconnected.

Step 7. To reinstall tripler/low level amplifier, reverse procedure given in Steps 1-6.

5.2.2 $\quad 406-420 \mathrm{MHz}$ Models Only

Step 1. Loosen two captivated assembly screws on "low level"' PA heat sink.

Step 2. Pivot and lift 'low level"' PA assembly up and off pivot bushing and simultaneously disconnect following connectors:

- PA power plug from receptacle J1001 on transmitter interconnect board;
- "low level" PA input plug (P501) from tripler/low level amplifier output receptacle (J551);
- "low level" PA output plug (P502) from isolation network input (J1011).
"Low level" PA assembly is now completely disconnected from unified chassis. Place it aside.

Step 3. Loosen three captivated screws used to mount "low level" PA mounting bracket and remove bracket.

Step 4. Disconnect tripler/low level amplifier power plug from receptacle J1003 on transmitter interconnect board.

Step 5. Loosen four captivated screws which hold tripler/low level amplifier in place.

Step 6. Carefully pull tripler/low level amplifier part way out and then disconnect its input (P551), connected to output of 1 st bandpass filter (J452). Tripler/low level amplifier is now completely disconnected.

Step 7. To reinstall tripler/low level amplifier, reverse procedure given in Steps 1-6.

 function
 $\underset{\substack{\text { It Randpass Fiter } \\ \text { bandopsssange }}}{ }$

$\cdots=2$

EXCITER/1ST BANDPASS FILTER MODEL TLE/2008 SERIES
TRIPLER/LOW LEVEL AMPLIFIER model tleibooa series

coick		
		cot
${ }_{\text {cosem }}^{\text {como }}$		边
		cosememe
${ }_{c}^{c}$		
C4 18 thru 42 k C422		
	coill	${ }_{\text {a }}^{\text {and }}$
		\% $3=$
comy		
		,010
	cole	
${ }_{\text {ctem }}$		
		$\underbrace{1020}$
cem		
$\underbrace{\text { a }}_{\text {a }}$		
		${ }^{\text {a }}$

POWER AMPLIFIERS

Table 1. Model Usage

		FREQUENCY RANGE		
PA ASSEMBLY	POWER			
	OUTPUT	$406-420 \mathrm{MHz}$	$450-470 \mathrm{MHz}$	$470-512 \mathrm{MHz}$
TLE1681A	12 W	X		
TLE1683A	12 W		X	
TLE1684A	12 W		X	
TLE1693A	20 W		X	
TLE1694A	20 W		X	
TLE1701A	45 W	X	X	
TLE1703A	40 W		X	
(SEE NOTE)	45 W			
TLE1711A	75 W	X	X	
TLE1713A	75 W			X
TLE1714A	60 W			

Note: This PA is "POWER SET" to either 40 - or 45 -watts, depending upon transmitter frequency desired.

1. INTRODUCTION

The "Micor" power amplifiers provide the needed output power requirements for base and repeater stations. Table 1 lists all the power amplifiers available. Refer to the station model charts, at the front of this manual, to identify the specific power amplifier covered
in this manual. Alignment and Maintenance information is covered under the Station Data tab of this manual.

Transmitter Power Amplifier microstrip circuit location, according to radio models, is illustrated in Figure 1.

NOTES:

1. REFER TO CROSS-REFERENCE TABLE FOR PART NO. OF MIC ROSTRIP CIRCUITS ACCORDING TO LOCATION FOR VARIOUS RADIO MODELS.
2. "C" ON TRANSISTOR CAPS INDICATES PLACEMENT OF COLLECTOR LEAD

LOCATION	RADIO MODEL	FREQUENCY RANGE (MHZ)	MICROSTRIP PART NO.
A	B/C34, B84 B/C54/64 C24 B/C34 B/C44, 54, 64, B84 B/C34	$\begin{aligned} & 406-420 \\ & 406-420 \\ & 450-470 \\ & 450-470 \\ & 450-512 \\ & 470-512 \end{aligned}$	1V80709D52 1V80709D51 1V80709D53 iv80709D53 1V80709D51 1V80709D52
B	B/C34, 884 B/C54, 64 C24 B/C34 B/C44, 54, 64, B84 B/C34	$\begin{aligned} & 406-420 \\ & 406-420 \\ & 450-470 \\ & 450-470 \\ & 450-512 \\ & 470-512 \end{aligned}$	1V80769899 1V80769899 1V80775B62 1V80775862 1V80769899 1V80769B99
c	B/C54, 64 B/C44, 64, B84 B/C54	$\left\lvert\, \begin{aligned} & 406-420 \\ & 450-512 \\ & 450-512 \end{aligned}\right.$	1V80754803 1V80739815 1V80739811
D	B/C54 B/C64 B/C44, B84 B/C54 B/C64 B/C64	$\left\lvert\, \begin{aligned} & 406-420 \\ & 406-420 \\ & 450-512 \\ & 450-512 \\ & 450-470 \\ & 470-512 \end{aligned}\right.$	1V80709D23 1V80709D26 1V80709D22 1V80709D20 1V80709D19 1V80709D21
E	B/C64 B/C64 B/C64	$\left\lvert\, \begin{aligned} & 406-420 \\ & 450-470 \\ & 470-512 \end{aligned}\right.$	1V80709D24 1V80709D17 1V80709D28
F	B/C64 B/C64	$\left\lvert\, \begin{array}{\|l\|} \hline 406-420 \\ 450-512 \end{array}\right.$	1V80754B05 1V80739B28
G	B/C64 B/C64 B/C64	$\begin{aligned} & 406-420 \\ & 450-470 \\ & 470-512 \end{aligned}$	1V80709025 1V80709D18 1V80709D27
H	B/C64 B/C64	$\begin{array}{\|l\|} \hline 406-420 \\ 450-512 \end{array}$	1V80754807 1V80739827

CEPS-17436-D

Figure 1. Microstrip Location Diagram \& Cross Reference Table

FUNCTION

Provides final transmitter output power amplification.

\section*{| $\begin{array}{c}\text { REFERENCE } \\ \text { SYMBOL }\end{array}$ | $\begin{array}{c}\text { MOTOROLA } \\ \text { PART No. }\end{array}$ |
| :---: | :---: |
 PARTS LIST}

description

Microstrip and heatsink kit (12-watt) MICROSTRIP AND HEATS
TLEE301A ($406-420 \mathrm{MHz})$
TE 8303 A
($450-470 \mathrm{MHz})$

TKN6766A Metering and Cable Kit

C527, 536, 548,549 548,549 P501 P505	21-861219	$\frac{\text { CAPACITOR }, \text { feed-thru: }}{1000 \mathrm{pF} ; \mathrm{GMV} ; 500 \mathrm{~V} ; \mathrm{codec}}$
	9-84886E01 28-83099K01	
inon-referenced tiems		
	1-80775B34 1-80775B33 1-80775B35 1-80775B36	BRACKET \& CAPACITOR ASSY. includes referenced items C $527, \mathrm{C} 536, \mathrm{C} 548, \mathrm{C} 549$ and C527, C536, С548, C549 and CABLE \& $\& 1$ BRACKET includes referenced item P5 and 42-10217A02 STRAP, cable harness; 2 req'd. CABLE \& CONNECTOR ASSY. includes referenced item P50i and 30-83794C01 CABLE, coaxial (7") includes referenced item P592 and 30-83794CO1 CABLE, coaxial (9-1/4")

NOTE: Replacoment transistors must be ordered by Motorola
part number for optimum performance.

$\begin{array}{c}\text { REFERENCE } \\ \text { SYMBOL }\end{array}$	$\begin{array}{c}\text { Motorolat. } \\ \text { PART No. }\end{array}$	Deschiption

TKN6767A Me	tering and Cab	Kit PL-3430-B
Cl thru 5	21-821474	CAPACITOR, fixed:
C6, 7	21-84211803	$3500 \mathrm{pF} ; 250$
${ }_{\text {c }}^{\text {c8, 9, 10, 527, }}$	21-861219	1000 pF ; 500 V ; coded RED
		CONNECTOR, receptacle:
${ }^{1}$	9-84207B01	female; 7 contact
P501, 502	28-84967D01	CONNECTOR, plug:
		male BNC type
		RESISTOR, fixed:
R2R518R519	$\begin{aligned} & 6-124 \mathrm{D} 12 \\ & 27-82620 \mathrm{~B} 03 \\ & 6-84605 \mathrm{E} 01 \end{aligned}$	390k $\pm 10 \%$; $1 / 4 \mathrm{~W}$
		. 02 55\%; 3 W
		meter shunt; . $008 \pm 1 \%$
тB1	31-50378	TERMINAL BOARD
		2 screw barrier type CABLE, ASSEMBLY, RF:
W501W502	1-80775841	
	1-80775842	coaxial, include日: 30-84173E01 CABLE coaxial, 15^{\prime} long and P502
NON-REFERENCED ITEMS		
	P6-83960801	FERRITE CORE; 9 req'd.
	22-10217A02	STRAP, cable harness; 2 req'd.
	43-82253C07	BUSHING; 2 req'd.
	47-84475E01	
	24-84548A01	INSULATOR, washer; 2 req'd.
	22-38764	CLAMP, cable; 2 used
	2-131865	$\text { NUT, } 1 / 4-28 \times 3 / 8 \times 3 / 32^{\prime \prime} ;$
	3-129468	SCREW, tapping; 10-32 $\times 5 / 8{ }^{\prime \prime}$;
		2 used
	3-184184	SCREW, tapping; 4-40 x 5/16';
	4-7658	LOCKWASHER \#10 internal;
		2 used
	4-7670	LOCKWASHER \#1/4 internal; 2 used
	29-5223	LUG, solder; 2 used
	29-847854	LUG, tongue
	14-84494E01	bus bar
	14-84937E01	insulator, bus

revisions

model and SUFFIX NO.	$\begin{aligned} & \text { REFF: } \\ & \text { sYmbil } \end{aligned}$	chanae	Location
TKN6787A	-	DELETE: 14-82975K01, INSULATOR	PARTS LIST

Parts list

Ememer	and	，
		，
	，	$x^{\text {and }}$
	．8207801	边
	Sasmon	\％oweron hue
soo		nessoo．
	cos	边
	${ }^{12.5098}$	
		込
（wor	$\xrightarrow{\text { chen }}$	
	ox．mersm	venr mame
	，	
	${ }_{\text {dem }}$	为
	5．12948	${ }^{\text {andem}}$
	，	边
	－1．75s	
	䢕	

PARTS LIST

$\begin{array}{c}\text { REEERENCE } \\ \text { STMBOL }\end{array}$	$\begin{array}{c}\text { MOTOROLA } \\ \text { PART NO. }\end{array}$	DESCRIPTION

$\begin{array}{c}\text { REFERENCE } \\ \text { SYMBOL }\end{array}$	$\begin{array}{c}\text { MOTOROLA } \\ \text { PART NO. }\end{array}$	DESCRIPTION

For optimum performance, diodes, transistors and integrated
circuits must be ordered by Motorola part numbers.

1. INTRODUCTION

The power control board operates as a control loop, which continually monitors the final stages of the transmitter (via the antenna network) and controls that output by regulating the A+ applied to collector of the first stage of the power amplifier. The A+ is controlled by control stage Q902, Q601, U601 and associated circuitry.

2. FUNCTIONAL DESCRIPTION
 (Refer to the schematic diagram)

The output of the differential amplifier U601 is determined by the potentials present on the noninverting (+) and inverting (-) inputs. These potentials are developed by the power control board circuitry in the following manner.

When the load impedance of the antenna circuitry provides a good match (low VSWR) to the power amplifier, a bias voltage is produced by the dc reference bias circuitry. The bias voltage produced is placed on the inverting input, pin 1 (also called the reference input), of the differential amplifier.

When the transmitter is keyed, the forward (output) power from the final stages of the power amplifier is fed through the antenna network to the antenna circuit. This flow of power is sampled by the forward power sampling circuitry and places a bias, proportional to the forward power in the antenna network, on the non- inverting input (pin 5) of the differential amplifier. The power set potentiometer is then adjusted, changing the potential on the non-inverting input. As this voltage changes, relative to the reference input voltage, the output of the differential amplifier changes, in turn changing the control transistor collector voltage and therefore the output of the power amplifier.

Once the power has been set to the proper level, any change in the output power will be instantly corrected by the circuitry. If the power increases, the increase
causes the differential amplifier output voltage to increase, decreasing the output from the dc amplifier, increasing the output from the control stage, which decreases the gain of the power amplifier until the output returns to the preset level. A decrease in transmitter power amplifier output causes the reverse action.

Any power reflected back from the antenna circuit is detected by the reverse power sampling circuit. Reverse power causes a bias in the antenna network which decreases the potential on the reference input of the differential amplifier. Therefore, increasing levels of reflected power will cause the transmitter power output to be decreased to a safe level.

3. MAINTENANCE

Before beginning maintenance of the power control board, disconnect the cable between the isolation network output (J1012) and the PA input (J901). Connect a UHF-rated wattmeter between the isolation network output connector J1012, with a 50 ohm , non-reactive, dummy load capable of dissipating at least 50 watts.

CAUTION
Failure to observe maintenance philosophy can result in damage to station and/or associated test equipment.

The power control board is incorporated in the transmitter to provide protection for the rf power transistors under environmental conditions such as voltage, load variation, and device variations. In order for the circuitry to operate properly and provide protection, it is necessary to have adjusted the "low level" power amplifier controls (DRIVE LIMIT and POWER SET) in accordance with the alignment portion of the 'Low Level" Power Amplifiers section (68P81042E28).

NOTE
Power control board must be installed in transmitter for testing to provide
necessary power, ground, and control connections. For bench testing of a board, which has been removed from radio set and replaced by spare, another radio set is required as troubleshooting test fixture.

3.1 PERFORMANCE TESTS

3.1.1 POWER SET Control Test

This control allows the power output of the transmitter to be varied from zero (0) power out (with the control fully counterclockwise) to greater than the rated output (with the control fully clockwise). Refer to the power amplifier power set procedure in the alignment portion of the "Low Level" Power Amplifiers section (68P81042E28).

CAUTION
For proper operation of the protection circuitry, it is imperative that the POWER SET control never be left in a position that exceeds rated power output.

Step 1. Key transmitter.
Step 2. Adjust POWER SET control until rated power output is reached.

IMPORTANT

If POWER SET control ONLY is used to adjust rf power output, for any non-rf power alignment or troubleshooting procedure, ONLY the POWER SET control requires adjustment to restore rf power to rated level.

Step 3. Unkey transmitter.

3.1.2 Automatic Power Leveling Test

A separate, variable dc power supply must be used to perform this test.

Step 1. Disconnect 13.6 volt lead at PA. Connect a 16 volt source in its place. Set power supply output to +13.6 volts.

Step 2. Key transmitter.
Step 3. Vary the supply voltage from +13.6 volts to +16 volts. The transmitter power output variation should be between $+10 \%$ and -5%.

Step 4. Unkey transmitter and reconnect "low level" PA to the station power supply.

3.1.3 DRIVE LIMIT Control Test

This control allows the drive power to the "low level" PA from the controlled stage to be limited to a level sufficient to provide rated performance. Its purpose is to set a limit on the drive power that can be called for by the automatic power leveling circuitry. This prevents earlier "low level" PA stages from being damaged by overdrive if later stages fail. Depending on the position of the DRIVE LIMIT control, the maximum collector voltage of the controlled stage can be limited to between 6.5 volts and 12.5 volts. The proper procedure for setting the DRIVE LIMIT control is given in the alignment portion of the "Low Level" Power Amplifiers section (68P81042E28).

Abstract

CAUTION For proper operation of power leveling circuitry, the DRIVE LIMIT control must not be set for any lower power output than that given in DRIVE LIMIT column in Table 3 of the alignment portion of the "Low Level" Power Amplifiers section (68P81042E28).

In stations with high gain driver and power amplifier stages, the power leveling power set circuitry may operate the controlled stage at a collector voltage less than 6.5 volts. In such stations, little or no effect will be seen from the DRIVE LIMIT control. If it is not possible to lower power output with the DRIVE LIMIT control to the level called for in the alignment procedure, set the DRIVE LIMIT control fully clockwise, maximum drive limit (minimum power output).

In some stations the rf drive reserve is not sufficient to require use of the DRIVE LIMIT control. In these stations, the power output level called for in the "low level" PA alignment procedure cannot be obtained. If such a situation is found, set the DRIVE LIMIT control fully counterclockwise, minimum drive limit (maximum power output).

3.1.4 'No-Power" Protect Circuit Test

The "no-power" protect circuit prevents the transmitter "low level" power amplifier from being operated without being connected to the isolation network. If the forward power detector in the isolation network does not sense more than approximately 7 watts, the "no-power"' protect circuit will shut-off the drive to the "low level"' power amplifier stages. This protection circuit can be made to operate to check its performance by turning the power output down below 7 watts, using the POWER SET control. Once the "no-power" protect circuit operates, the transmitter must be re-keyed to return drive power, after the original "no-power" condition is corrected.

3.2 TROUBLESHOOTING

The power control board troubleshooting chart outlines a logical procedure for finding major functional failures. However, because of the complexity of the circuit operation, it is impossible to provide a troubleshooting chart that will be usable for some of the more subtle problems that may appear in the power control board performance tests. Efficient location of these "subtle" problems depends on a thorough knowledge of the power control board theory of operation. In any case, it is a good idea to review the power control board functional description, in this section, before beginning troubleshooting.

Once familiar with the circuit operation, a defective stage or component can be found by making voltage measurements and comparing them with those shown on the schematic diagram. Observe the voltage changes that occur when the POWER SET and DRIVE LIMIT controls are varied.

The "low level" power amplifier stages can be disabled to permit easier power control board troubleshooting. To disable the stages, remove the heavy RED lead from the barrier strip and cover with an insulator. On $406-420 \mathrm{MHz}$ models, remove the interconnect plug. When the stages are disabled, the "NoPower" protect circuits will go into operation. To disable the "No-Power" protect circuits, use the following procedure.

Step 1. Remove ac input power from the station.

Step 2. Remove the shield from over power control board.

Step 3. Connect jumper across C611 on power control board.

Step 4. Reconnect ac power to station and perform whatever troubleshooting is required.

CAUTION

Before "low level" power amplifier stages are re-enabled, be sure to re-enable "NoPower" protect circuit. DO NOT OPERATE "LOW LEVEL" POWER AMPLIFIER STAGES WITH "NOPOWER" PROTECT CIRCUITS DISABLED.

Table 1 lists some power control board malfunctions and their possible causes.

Table 1. Power Control Board Troubleshooting Hints

Symptom	Possible Cause -Check the following:
POWER SET malfunctioning	a. Power detector diodes CR1001 and/or CR1002
	b. IC601 bias circuitry
	c. POWER SET pot
DRIVE LIMIT malfunctioning	a. CR603
	b. DRIVE LIMIT pot
"No-Power" protect malfunctioning	a. CR604
	b. CR611

 function

REFERENCE		
SYMEOL	MOTOROLA FART NO.	DESCRIPTION

parts list

PL-5254-C		
		CAPACITOR, fixed:
C601 thru 606	21-82610C04	$36 \mathrm{pF} \pm 5 \%$; 200 V
C607	21-82372C04	. $05 \mathrm{uF}+80-20 \% ; 25 \mathrm{v}$
C608, 609,610	21-82610C04	$36 \mathrm{pF} \pm 5 \%$; 200 V
C611	23-82783B10	$1 \mathrm{uF} \pm 20 \% ; 50 \mathrm{~V}$
C612	21-82610C04	$36 \mathrm{pF} \pm 5 \%$; 200 V
C613	23-83214C04	$1 \mathrm{uF} \pm 20 \% ; 15 \mathrm{~V}$
C614 thru 623	21-82610C04	$36 \mathrm{pF} \pm 5 \%$; 200 V
C624	8-82905G30	$0.1 \mathrm{uF} \pm 10 \% ; 50 \mathrm{~V}$
C625	21-82372C04	$.05 \mathrm{uF}+80-20 \% ; 25 \mathrm{~V}$ (TLN4926AV only)
		DIODE: (SEE NOTE)
CR601	48-83654H01	silicon
CR602	48-83696E04	Zener type; 9.1 V
CR603	48-84616A01	hot-carrier
CR604	48-869777	ailicon controlled type M9777
CR605 thru 607	48-82392B16	silicon
CR608	48-82392B03	日ilicon
CR609	48-82466H18	silicon
		CONNECTOR, receptacle:
3601	9-84207B0I	female; 7 contac ${ }^{+}$
		TRANSISTOR: (SEE NOTE)
Q601	48-869641	PNP; type M9641
Q602	48-869570	NPN; type M9570
		$\frac{\text { RESISTOR, fixed: } \pm 10 \% ; 1 / 4 \mathrm{~W} \text {; }}{\text { unless otherwise stated }}$
R601	6-124C19	
R602	6-124A 45	$680 \pm 5 \%$
R603	6-124C49	1k
R604	6-124C75	12k
R605	6-124C89	47k
R606	6-124C73	10k
R607	18.83083G20	var: 50k $\pm 30 \%$
R608	6-124C49	1 k
R609	18-83083G14	var: $1 \mathrm{k} \pm 30 \%$
R610	6-124C65	4. 7k
R611	6-124A 39	$390 \pm 5 \%$
R612	6-124A45	$680 \pm 5 \%$
R613	6-124C89	47k
R614	6-124A 83	27k $\pm 5 \%$
R615	6-124C49	1 k
R616	6-124C57	2. 2 k
R617	6-124C49	1 k
R618	6-124C71	8. 2 k
R619	6-124A 89	$47 \mathrm{k} \pm 5 \%$
R620	6-124C71	8. 2 k
R621	6-124C85	33k
R622	6-124C81	22k
R623	6-124D12	390k
R624	6-124C81	22k
R625	6-124C91	56k
R626	6-124C25	100 (TLN4926AV only)
	6-867628	$\frac{\text { THERMISTOR: }}{195 \mathrm{k} \pm 10 \% @ 25^{\circ} \mathrm{C}}$
RT601		$\frac{\text { INTEGRATED CIRCUIT: }}{\text { (SEE NOTE) }}$
	51-83629M12	type; M2002
MECHANICAL PARTS		
	55-84300B03	HANDLE; long
	54-84973E01	HANDLE; short
	76-84069B01	FERRITE BEAD; 6 used
	42-84284B01	RETAINER; 4 used
	3-139506	SCREW, Tapping; $4-40 \times 5 / 16^{\circ}$; 4 req'd.
	3-134169	SCREW, tapping; 4-40 $\times 1 / 4^{\prime \prime}$
	5-84220B01	GROMMET
	29-84028 HOL	TERMINAL, male; 9 used

NOTE: For optimum performance, diodes, transistors, and integrated circuits must be ordered by Motorola part numbers.

FUNCTION
The antenna network provides the power amplifier stage with a constant, low VSWR, 50 -ohm load which is independent of the transmit antenna. This load is provided by the circulator

The antenna network develops dc voltages, which re proportional to the forward output power of the PA and the power reflected back into the PA (reverse power). These voltages are then routed to the powe
control board where they are applied to the input of a differential amplifier which determines the amount of drive supplied to the control stage. The control stage then sets the gain of the first stage of the power amplifier.

Another function of the antenna network is to attenuate transmitter carrier harmonics to a level at least 85 dB below the carrier. This is accomplished by a low pass harmonic filter incorporated as part of the antenna network.

PARTS LIST

TKN6 764A Antenna Network Cable

P1000	- -	$\frac{\text { CONNECTOR, plug: }}{\text { includes: }}$
		15-83498F06 HOUSING, connector, 29-83499F01 CONTACT connector; 5 used and 46-84549F11 PLUG, polarizing
W1001	$1-80775 \mathrm{B22}$	CABLE ASSEMBLY:
		reference items P1000 and Pl012: 42-10217A02 STRAP, cable; 4 used and miscellaneous wire leads.

FUNCTION

The antenna network provides the power amplifier stage with a constant, low VSWR, 50 -ohm load which is independent of the transmit antenna. This load is provided by the circulator.

The antenna network develops dc voltages, which The antenna network develops dc voltages, which
are proportional to the forward output power of the PA are proportional to the forward output power of the PA
and the power reflected back into the PA (reverse power). These voltages are then routed to the power control board where they are applied to the input of a differential amplifier which determines the amount of drive supplied to the control stage. The control stage then sets the gain of the first stage of the power amplifier.

Another function of the antenna network is to attenuate transmitter carrier harmonics to a level at least 85 dB below the carrier. This is accomplished by a low pass harmonic filter incorporated as part of the antenna network.

| REFERENCE |
| :---: | :---: | :---: |
| SYMBOL | | MOTOROLA |
| :---: |
| PART NO. |\quad DESCRIPTION

TLE1660B Series Antenna Network PL-6809-O

CR1001, 1002	TLE1661B TLE1663B TLE1664B TLE1665B 48-846 16P01	$406-420 \mathrm{MHz}$ (Base Station) $450-470 \mathrm{MHz}$ (Base Station) $470-494 \mathrm{MHz}$ (Base Station) 494-512 MHz (Base Station) NOTE Field replacement of component parts of these units are not recommended (except those listed below!. For replacement, order the entire unit. Specify kit numbers and frequency range quired. DIODE, hot carrier

TKN6764A Antenna Network Cable PL-6434-O

parts list

TLE1670B Series Antenna Networ
PL-6746-O

REFERENCE SYMBOL	$\begin{aligned} & \text { MOTOROLA } \\ & \text { PART NO. } \end{aligned}$	DESCRIPTION
	TLE1671B	$406-420 \mathrm{MHz}$ (Repeater (RT Station)
	TLE1673B	$450-470 \mathrm{MHz}$ (Repeater (RT Station)
	TLE1674B	$470-494 \mathrm{MHz}$ (Repeater (RT Station)
	TLE1675B	494-512 MHz (Repeater (RT Station) NOTE
- 1001.1002		Field replacement of component parts of these units are not recommended (except those listed below). For replacement, order the entire unit. Specify kit numbers and frequency range required.
CR1001, 1002	48-84616PO1	DIODE, hot carrier

TKN6 764A Antenna Network Cable PL-6434-O

P1000	$1-80775 \mathrm{~B} 22$	CONNECTOR, plug: includes:
		15-83498F06 HOUSING, con-
		nector, 29-83499F01 CONTACT connector; 5 used and 46-845
		46-84549F11 PLUG, polarizing
W1001		CABLE ASSEMBLY:
		includes:
		reference items P1000 and P1012: 42-10217A02 STRAP
		cable; 4 used and miscellaneous
		wire leads.

1. Description
 frequency audio tone for continuousus modulation
transmitted f f signal in "Privat-Line" operation.
2. functional operation
2.1 general
tions. The encoder may be divided into three major secTone Oscillator - The tone oscillator generates
two equal-amplitude tone signals 180° out-of-phase whenever power is applied to the radio. A feepdanack
amplifier provides negative feedback to limit the evel 0 amplifier rrovides negative feedback to limit hhe level o
oscillation. The "Vibrasedr)
mines the frequency of operation.

Reverse Burst Timing Generator .-.The reverse
burst timing generator provides a rransmitter turn-off delay of approximately 150 milliseconds after the transmitter is unkeyed. During this period, a shifted
phase tone (reverse burst) is developed in the tone outphase tone (reverse burst) is developed in the tone out-
put
pircuit which dampens the oscillations of the "librasponder" resonant reed in listening reeeivers to eliminate
message.

Tone Output Circuit - The tone output circuit
ovides a fixed level tonc output to the modulator of provides a fixed level tonc output to the modulator of
the transmitter and shifts the phase of he tone during

2.2 TONE OSCILLATOR

The tone oscillator operates continuously yhile the
sation is "on". The outputs of the differential station is "on". The outputs of the differential
amplifier, formed by Q701 and Q772, are identical but
180° out of phase. The amplitudes of these collector 180° out of phase. The anmpititudes of these eoliector
signals are independent of frequency. A positive feed-

 R708, which increases the positive feedback. After ap
proximatell 1.5 seconds (voltage across C710 reache

 signal level exceeds a fixed a mount, Q708 is biased into
operation. It provides a negative feedback signal which
 sinusoidal wave output. The "Vibrasender", resonan
reed is the frequency determining device of the
cesill ced is the frequency determining device of the
oscillator. 1 tacts as a very high Q, narrow bandpasis transformer, coupling only its resonanarf frequency and
tlocking all others. At its resonant frequency the reet vibrates so couple energy from the primary to the secon
dary winding.
2.3 REVERSE BURST TIMING CIRCUIT

In the unkeyed transmitter condition, delay
erator, Q706, is forward biased through CR703 and
 coupled to the base of the delayed th"
(Q707) by K722, and Q707 is biased "off"
When the PTT button is closed, keyed filtered A
is applied d R R 716 and turns on the keying switch, Q70 With Q705 acting as a short circuit
-O707 is biased "on" through R723, CR702 and
Q705 to A.

- - Keyed, filler $\mathrm{A}+$ is applied through Q707 10 tur
on the trand, filter
onsmiter
C708 charges from the filtered A+ line through
Q706 base-cmitter junction, CR730 and R718.
-The PL switch gate, Q709, is urned on by bia
PL tone gate, Q703.

Note that Q700 has not changed states and is stil
turned on by bias current through R719.
When the PTT button is released, the keyed, filler ansmitter continues to receive A+ from Q707 during
 tivating the PL tone g g
reverse burst tone signal.
--C708 discharges through R718, R719, R721,
R722 and R723, back biasing CR703 and turning of
Q706.
With Q706 off, Q707 remains on by receiving
Wase bias through R 722 and R 721 .
-After approximately 150 milliseconds, the
voltage across Con decreases to the point where Q 706 voltage across C708 decreases so the mpinise onds, there Q the
turns on again and applies $\mathrm{A}+$ across R 721 . -The A+ across $R 721$ turns off Q707 which
moves the delayed keyed filter A+ from the transmit2.4 TONE OUTPUT CIRCUIT

 off and Q703 is turned on which completes the tone
path from Q702 to C703. The two tone signals 180° out path from Q702 to C703. The two tone signals 180° ou
of phase, combine through the phase shifí capacitor to produce s. signal to the emitter foilower that is 240° out
of phase with the original tone Emiter foll provides impedance matching in a low impedance oupu and isolates the tone oscillator from the external circui

tremoope

MODEL TLN5731A

MECHANICAL PARTS LIST

Reference	Motorota	descri

ELECTRICAL PARTS LIST

[^3]

maintenance

a. Recommended Test Equipment
(1) Motorola SLN6221A "Private-Line" Tone Generator -- used for testing "Vibrasender" resonant reeds.
(2) Motorola Solid-State AC Voltmeter -- used for tone level measurement.
(3) General purpose oscilloscope -- valuable for ignal tracing and locating sources of distortion.
(4) Motorola Solid-State DC Multimeter -- used for dc voltage measurement.
(5) Motorola S1343 Series Frequency Counter o 1344 Series Frequency Counter/Deviation Meter used for measuring PL tone frequency.
b. Performance Test

Measure frequency deviation of the transmitter in which the PL encoder is installed. With the transmitte keyed and PL tone modulation (only), deviation should read ± 0.5 to $\pm 1.0 \mathrm{kHz}$
c. Troubleshooting
(1) If no deviation is measured the trouble may lie in the tone oscillator or tone output circuit. The trouble may be isolated by the following steps.
(a) Check $9.6-$ oht input to encoder.
(b) Check ac signal voltage at collector of Q701.
(c) If signal is present, check Q704
(d) If no signal is present any component in the oscillator loop could cause the trouble. Check the "Vibrasender" resonant reed in the SLN6221A "Private-Line" Tone Generator.
(e) If the tone generator does not produce an output signal the reed is defective.
(f) If the reed is good, replace it in the encoder and make dc voliage measurement in the tone oscillator circuit to locate the defective components.
(2) If low deviation is measured, check ac signal and compare them with the chart readings to find the source of trouble.
(3) If deviation is normal, but calls are not being received, check the frequency of the PL encoder tone. I off-frequency, replace the "Vibrasender" resonan reed.
(4) If squelch tail noise bursts are heard by all istening receivers, check dc voltages of Q703 and Q706 is keyed and unkeyed conditions.
(5) If the transmitter cannot be keyed, and the rouble has been isolated to the PL encoder board, measure dc voltages in Q705 and Q707 stages.
(6) If too much tone deviation is measured, check Sedback amplifier Q708.

simplex "digital priva

NCoder board troubleshooting chart		
Symprom	Probable Cavsss	Action
No dalayed heged At	1. No tevect A to encoder	Chece keyect A at t pin 10 or P902
		${ }_{\text {cher }}^{\text {cher }}$
	. Fauty inverer (CTV2]	,r opera
		Sataocer
	ond eoder bor not suxteringe	
	U881 code egererato on	Apply +9.6
		01-5,
Squelch tails are heardat the speaker of a radiolistening to this transmitter.	(tateme	Cherk the detayed keyed
		Preese
		Feed ueot-5 from dee
		${ }_{\text {a }}$
		U801-15 thru U801-23 for a proper

PARTS LIST

1．INTRODUCTION

The Model TRE1200BA Series＂Micor＂＂＂Sen－ sitron＇UHF Receiver is illustrated in the following sec－ tions．Some stations include two receivers and，in a few of these stations，one of the receivers may have a shifted i－f．This occurs when the separation between the two operating carrier frequencies is mathematically related to the i－f．The Receiver RF \＆I－F section（68P81042E37） of this manual gives specific conditions when this oc－ curs．All two receiver stations include a Model TLN8340A 2－Receiver Coupler．Table 1 lists the receiver models available per frequency．

Table 1．Model Usage

MODEL	FREQUENCY RANGE (MHz)
TRE1201BA	$406-420$
TRE1203BA	$450-470$
TRE1204BA	$470-494$
TRE1205BA	$494-512$

An optional Model TLE8190A Series RF Preamplifier is available for this receiver．The preamplifier increases the sensitivity of the receiver and is particularly useful in two receiver stations．The preamplifier more than makes up for the half signal strength loss in each leg of the two－receiver coupler．The optional rf preamplifier is illustrated in the Receiver RF \＆I－F section（68P81042E37）of this manual．

Receiver Alignment and Maintenance are detailed under the Station Data tab，at the front of this manual． Receiver cabling is detailed on the typical station layout diagram（PEPS－28289），under the Station Data tab． Receiver electrical and／or mechanical parts lists，circuit board details，and parts location photographs ac－ company the applicable schematic diagram in the following sections．

UNIFIED CHASSIS RECEIVER INTERCONNECT BOARD

1. DESCRIPTION

The receiver interconnect board connects the receiver rf and i-f board and the receiver audio and squelch board to the station unified chassis interconnect board.

A number of jumpers are provided to allow use of the board in single and two-receiver stations, with "Digital PL", operation and for modified squelch operations. Jumper connections for these modes of operation are shown in the jumper chart on the receiver interconnect board schematic diagram.

2. '"AND SQUELCH’’ OPERATION

An optional mode of receiver operation, known as "AND SQUELCH', can be added when desired. This feature provides "variable PL sensitivity" (coded squelch plus adjustable noise-activated carrier squelch.)

In this mode, the receiver audio channel is activated when a PL tone is received and the carrier squelch
threshold level is exceeded. Since the carrier (noiseactivated) squelch circuit sensitivity is adjustable, and since it is one of the controlling factors in the squelching of receiver audio, the operation can be aptly described as 'variable PL sensitivity". Thus, "AND SQUELCH" denotes both coded squelch and carrier squelch operating simultaneously.

Conversion of the receiver to the "AND SQUELCH" mode of operation requires the addition of certain components to the receiver interconnect board, and the omission of certain jumpers on both the receiver interconnect board and the audio \& squelch board.

The parts required to convert the receiver to "AND SQUELCH" operation are listed with the receiver interconnect board schematic diagram.

Refer to the Audio \& Squelch Board section (68P81025E79) of this manual for further details relating to "AND SQUELCH" operation.

REFERENCE		
SYMBOL	MOTOROLA PART NO.	DESCRIPTION

PARTS LIST

NOTE

This parts list covers five models of the Receiver Interconnect Board. Where differences exist, the model number of the applicable unit is given in the Description column.

TLN5646A/TLN5648A/TLN5655A/TRN6196A/TRN6308A

NOTE:
For optimum performance, replacement diades must be ordered by Motorola part number.

REFERENCE	MOTOROLA	
SYMBOL	PART NO.	DESCRIPTION

TLN5912A Hardware Kit, 2nd Rcvr PL-5080-O

R960	$18-82515 \mathrm{~B} 50$	RESISTOR, variable:

NOTE:
Hardware for TLN5912A is listed in the Receiver Hardware Kits Section.

TLN5184A "Extender ${ }^{11}$ On-Off Switch Kit PL-5081-0		
S1	40-82085J03	$\frac{\text { SWITCH, toggle: }}{\text { spdt }}$
NON-REFERENCED ITEMS		
	$\begin{aligned} & 4-1725 \\ & 54-84861 G 01 \end{aligned}$	WASHER, flat: . $266 \times .562 \times$.040; 2 used LABEL: Extender On-Off

TLN5892A Chassis \& Hardware Kit
PL-5086-O

R951, 961	$18-82515 \mathrm{B50}$	$\frac{\text { RESISTOR, variable: }}{25 k \pm 30 \% ; 1 / 4 \mathrm{~W}}$ (shown on Receiver Intercon- nect Board Schematic)

NOTE:
Hardware for TLN5892A is listed in the Control and Application Manual.

"MICOR" '‘SENSITRON"

1. INTRODUCTION

This section contains functional description and operation of the receiver rf and i-f. Maintenance and
troubleshooting information is covered under the Station Data tab of this manual. Table 1 lists receiver rf \& i-f model usage per frequency. Table 2 gives the technical characteristics for the receiver rf \& i-f.

Table 1. Model Usage

Frequency Range	RF Deck	RF \& I-F Board	Preamplifier
$406-420 \mathrm{MHz}$	TLE8021A	TLE8031A/B	TLE8191A
$450-470 \mathrm{MHz}$	TLE8023A	TLE8032A/B	
$470-494 \mathrm{MHz}$	TLE8024A		
$494-512 \mathrm{MHz}$	TLE8025A	TLE8033A/B	

Table 2. Technical Characteristics

CHANNEL SPACING	25 kHz
EIA MODULATION ACCEPTANCE	$\pm 7 \mathrm{kHz}$ minimum
FREQUENCY STABILITY	AFC circuitry and channel element maintain receiver frequency within $\pm 0.0002 \%$ of reference frequency from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ambient temperature ($+25^{\circ} \mathrm{C}$ reference).
INPUT IMPEDANCE	50 ohms
	WITHOUT PREAMPLIFIER WITH PREAMPLIFIER
SENSITIVITY 20 l Q ${ }^{\text {QUIETING }}$	0.5 uV
EIA SINAD	0.35 uV
SELECTIVITY (EIA SINAD)	$-90 \mathrm{~dB} @ \pm 25 \mathrm{kHz}$
EIA SINAD INTERMODULATION	$-85 \mathrm{~dB}$
SPURIOUS AND IMAGE REJECTION	100 dB minimum
SQUELCH SENSITIVITY	THRESHOLD TIGHTAT THRESHOLD TIGHT AT AT 6dB MAX 14dB AT 6dB MAX 14dB ININ QUIETING MINQUIETING QUIETING QUIETING
CARRIER (adjustable), CODED (Tone or Digital)	0.25 uV MAX $\quad 1.2 \mathrm{uV} \mathrm{MAX} \quad 0.125 \mathrm{uV}$ MAX 0.6 uV MAX
METERING	All essential circuits for tuning and check are measurable with a single scale, 0-50 microampere meter, with 2000 ohms equivalent series resistance, or Motorola portable test set can be used.
POWER REQUIREMENTS	Regulated: 9.6 volts @ 100 mA 13.8 volts @ 9.6 mA

2. FUNCTIONAL DESCRIPTION

2.1 OSCILLATOR (CHANNEL ELEMENT)

Channel elements are highly stable crystalcontrolled oscillators (TCXO). They use unheated crystals in an oscillator circuit that is temperature compensated over the entire temperature range of -30° to $+60^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$. A variable warp capacitor in the base of each channel element is accessible through a hole in the base of the oscillator for fine frequency adjustment. Each channel element is a factory sealed, plug-in module which provides a train of stable frequency positive pulses, and is not field serviceable.

2.2 MULTIPLIERS

The third harmonic of the channel element frequency is selected by a two cell LC tuned circuit. The signal is then multiplied 8 times by three doubler circuits, routed to the rf deck and applied, through an injection filter, to the mixer to be heterodyned with the received carrier signal.

2.3 RF PRESELECTOR

The selectivity of the rf preselector prevents receiver degradation from mixer image frequency and spurious harmonics. It consists of six low loss, highly selective, helical resonant cavities. The bandpass of the preselector is characterized by a flat acceptance bandwidth and a steep skirt response. Carrier signals received at the antenna are routed to the rf deck and applied, through the preselector cavities, to the mixer to be heterodyned with the rf injection signal.

2.4 FIRST MIXER

The mixer uses a field-effect transistor, with low noise characteristics, to heterodyne the rf injection signal with the received carrier signal from the preselector, producing an i-f of 11.7 MHz . Frequency relationships are as follows:
$\mathrm{f}_{\mathrm{c}}=24 \mathrm{f}_{\mathrm{o}}+11.7 \mathrm{MHz}$
Where $\mathrm{f}_{\mathrm{c}}=$ carrier frequency
$f_{o}=$ channel element fundamental

2.5 FIRST FOUR-POLE CRYSTAL FILTER

This filter and the second four-pole crystal filter are the major factors determining final receiver bandwidth and selectivity.

The first four-pole crystal filter consists of two monolithic crystals and associated impedance matching circuitry. The output of the mixer is coupled to the input of the filter by an adjustable matching network.

Each crystal produces mechanical vibrations at the
crystal input when the electrical i-f signal is applied. Due to the inherent piezoelectric property of quartz crystals, these vibrations are propagated throughout the crystal and reconverted to electrical signals at the output electrodes. The high " Q '' of the crystals creates a narrow bandpass, resulting in excellent off-channel signal rejection.

2.6 FIRST I-F AMPLIFIER

The first i-f amplifier couples signals between the first and second four-pole crystal filters and provides approximately 70 dB gain. The integrated circuit (IC) U101 contains three differential amplifier stages that are internally voltage regulated and temperature compensated. Isolation between the three stages is also provided internally.

2.7 SECOND FOUR-POLE CRYSTAL FILTER

The second four-pole crystal filter establishes the final receiver selectivity and operates identically to the previously described first four-pole crystal filter. The filtered signal is applied to the second i-f amplifier.

2.8 SECOND I-F AMPLIFIER AND LIMITER

The second i-f amplifier and limiter consists of an IC (U102) with associated discrete components and performs amplification and limiting functions.

Four internal differential amplifiers, with internal voltage regulation and temperature compensation, are employed. The first two differential amplifiers provide approximately 55 dB gain. The second stage output provides metering and is applied to the third stage. The third stage, along with the fourth stage, are overdriven to provide excellent symmetrical limiting characteristics. Full limiting occurs regardless of signal strength. The limited output of the second i-f amplifier is applied to the discriminator with a constant amplitude.

2.9 CRYSTAL DISCRIMINATOR

The crystal discriminator consists of a monolithic, dual-resonant crystal, the operation of which is similar to a double-tuned, inductively coupled transformer, and associated impedance matching circuitry.

The output of the dual-resonant crystal is applied to a phase discriminator. Since amplitude is constnat, the discriminator will produce true frequency demodulation.

The discriminator low level audio output is applied to the audio \& squelch board via the receiver interconnect board.

3. ALIGNMENT

3.1 FREQUENCY CALCULATIONS

$\mathrm{fc}=24 \mathrm{fo}+11.7 \mathrm{MHz}$
$\mathrm{fo}_{\mathrm{o}}=\frac{\mathrm{fc}-11.7 \mathrm{MHz}}{24}$
Where: $\mathrm{fc}=$ carrier frequency
fo $=$ channel element frequency $11.7 \mathrm{MHz}=$ mixer output frequency (i-f) $24=$ channel element harmonic

3.2 PROCEDURE

Throughout the following receiver alignment (rf \& i-f board) procedure, the metering plug will be inserted
into the receiver metering receptacle. The procedure includes alignment details for the optional rf preamplifier. If the optional rf preamplifier is not used, disregard any preamplifier adjustments given in the procedure.

The receiver alignment (rf \& i-f board) procedure is given in Table 3. The physical locations of the receiver coils and controls are illustrated in Figure 1.

NOTE

In Steps 11 thru 13 of the procedure, terminate local receiver audio in an 8 ohm resistive load capable of dissipating at least 10 watts.

Figure 1. Receiver Adjustment Locations

Table 3. Receiver Alignment (RF \& I-F Board) Procedure

| Step | Selector Switch
 Position | Adjust | Procedure |
| :--- | :--- | :--- | :--- | :--- |

Table 3. Receiver Alignment (RF \& I-F Board) Procedure (Cont'd.)

Step	Selector Switch Position	Adjust	Procedure
8. Channel Element Output Fine Tuning	1	L101, L102	Alternately adjust (in order shown) for peak, until no further improvement is obtained.
9. Injection Filter Cavities	3	$\begin{aligned} & \text { L106 } \\ & \text { L107 } \\ & \text { L108 } \end{aligned}$	Adjust as follows (in order shown): Dip, Peak, Dip, Do not repeat.
10. Discriminator	5	-	1. Insert signal generator probe thru L110 hole on receiver shield. DO NOT touch circuit board. 2. Inject 11.7 MHz (11.8 MHz shifted $\mathrm{i}-\mathrm{f}$). 3. Adjust insertion of probe for saturated reading.
	4	L109	Adjust for EXACTLY zero. This adjustment is critical.
11. RF Preselector \& Mixer		SQUELCH control	Set fully CCW (unsquelch receiver).
		PL DISABLE switch	Set to disable position (to the right)
	4		1. Connect rf signal generator to receiver input connector. 2. Set rf output of generator to maximum. 3. Disconnect and bypass optional preamplifier (if so equipped). 4. Adjust generator to carrier frequency. Obtain EXACTLY zero. This adjustment is critical.

NOTE

If no indication:
a. Unscrew grounding shell of rf generator cable connector.
b. Pull plug partially out of jack (until cable ground is isolated from chassis).
c. Adjust generator to carrier frequency as indicated above.
d. Reconnect grounding shell of cable connector.
$5 \quad$ All rf preselector cavities
5. Adjust L111 thru L116 CW, one turn at a time, for peak.

Reduce generator output level, as necessary, to keep meter out of saturation.

L110 6. Adjust for peak.
7. Repeat from Step 5.

All rf preselector cavities
8. Examine relative heights of screw ends of L111 thru L116. They should be relatively level, with respect to one another. If not, adjust as necessary to make them level. Then, repeat from Step 5.

1. Adjust L106 thru L108 for minimum indication (best noise quieting). Use 0.2 V ac range.
2. Adjust L111 thru L116 for minimum indication (best noise quieting).
3. Repeat Step 2 until no further improvement can be obtained.

13. Preamplifier (if so equipped)	5	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	1. Reconnect preamplifier. 2. Adjust as follows (in order shown): Max, Max.
	Use ac voltmeter across local audio load, or selector switch position 11 of portable test set.	$\begin{gathered} \mathrm{C} 1 \\ \mathrm{C} 2 \\ \mathrm{~L} 111 \end{gathered}$	Adjust as follows for best noise quieting (in order shown): Min, Min, Min.
14. Channel Element On-Frequency Adjustment	4	F1, F2, F3, F4	1. Insert screwdriver through AFC OFF hole in RCVR shield, and ground point " N " to shield while performing the following adjustments. 2. Check meter 4 reading, zero indicates on-frequency condition. 3. Adjust F1 warp capacitor, through hole in RCVR shield, for exact zero reading. DO NOT READJUST L101 OR L102 AFTER THESE ADJUSTMENTS ARE MADE. 4. Repeat Steps 1 thru 4 for F2, F3, and F4, if present.
15. Alignment Check			Perform 20 dB quieting sensitivity measurement as described in Maintenance paragraphs of this section. Obtain .5 uV reading (.25 uV with preamplifier).

Table 3. Receiver Alignment (RF \& I-F Board) Procedure (Cont'd.)

Step	Selector Switch Position	Adjust	Procedure
16. Conclusion		All test equipment	Disconnect from station.
		PL DISABLE switch	Set to enable position (to the left).
		SQUELCH control	Adjust as required.
		LINE DISABLE switch	Set to enable position (to the left).
	is completes the	receiver alignment procedu	

4. MAINTENANCE

4.1 GENERAL

The following paragraphs provide maintenance shop type procedures for the individual receiver circuits in the station. After preliminary tests have localized the trouble to the particular area, use these bench tests, which include measurements with built-in station metering (or a Motorola portable test set), for testing and troubleshooting.

IMPORTANT

If POWER SET control ONLY is used to adjust rf power output, for any non-rf power alignment or troubleshooting procedure, then ONLY the POWER SET control requires adjustment to restore rf power to rated level.

CAUTION

Do not remove the channel element by exerting force through the hole provided for access to the channel warp capacitor. Excessive pressure will damage capacitor. A small access hole is provided adjacent to the one used for channel warp plug. Use a tuning tool (Motorola Part No. 66-84387C01) to push out element.

4.2 PERFORMANCE TESTS

The following paragraphs provide maintenance procedures for the receiver rf and $\mathrm{i}-\mathrm{f}$ board. These procedures consist of tests which include metering measurements, testing, and troubleshooting procedures which include integrated circuit checks.

NOTE

The receiver rf and i-f board must be installed in receiver for testing to provide necessary power, ground, control and signal connections. The board should always be secured in place with all mounting screws during operation and testing to provide a good rf ground to all stages of the receiver. The board may be installed
in the station or a "Micor" mobile radio set for testing.

Use the following tests to determine if the receiver rf and i-f board is operating properly. If either test produces unsatisfactory results, refer to the following receiver rf and i-f troubleshooting chart for a procedure to isolate the defective stage.

4.2.1 No-Signal Meter Reading Check

4.2.1.1 General

A failure in almost any part of the rf and i-f board will result in an improper meter reading in one or more of the test positions. Improper alignment will also cause improper meter readings.

Compare the current readings observed in RECEIVER quadrant positions 1 through 5 with those in Table 4. A low reading on meter position 1 indicates a defective channel element. A low reading on meter positions 2 or 3 indicates a defective multiplier circuit. Improper meter 4 or 5 readings indicate a malfunction elsewhere in the receiver. Check rf and i-f voltages per the schematic diagram to isolate the malfunction.

Table 4. Minimum Receiver RF \& I-F Meter Readings (No Input Signal Applied)

Selector Switch Position	Reading	Circuit Metered
1	15 uA	Channel element output
2	15 uA	First Doubler output
3	15 uA	Second Doubler output
$4+, 4-$	$0 \pm 2 \mathrm{uA}$	Discriminator output
5	10 uA	Second i-f amplifier and limiter

4.2.1.2 Input Voltages

If there are no test set indications at one or more of the metered points, check the dc input voltages to the receiver rf and i-f board per Table 5.

Table 5. RF \& I-F Board DC Input Voltages

P904-9	A + continuous (+13.8 V de with reference to chassis)
P904-11	9.6 V dc continuous (with reference to chassis) $(\pm 0.5 \mathrm{~V})$
P904-8	$9.6 \mathrm{~V} \mathrm{dc} \mathrm{continous} \mathrm{(with} \mathrm{reference} \mathrm{to} \mathrm{chassis)}$ $(\pm 0.5 \mathrm{~V})$

If meter indications localize the trouble to a specific stage or two, measure the dc input voltages to the suspected stages. Refer to the schematic diagram for the normal voltages.

4.2.1.3 Using the Portable Test Set

Step 1. The receiver rf and i-f board must be installed in a complete receiver for testing. Make sure the rf and i-f boards mounting screws are all secure and that all connections to the board are properly made.

Step 2. Be sure receiver shield is in place.
Step 3. Apply ac input power to station.
Step 4. Using a TEK-37 Adapter Cable, connect Motorola portable test set or meter panel to station as follows:

- Connect adapter cable 20-pin connector to receptacle on front of test set or meter panel.
- Connect adapter cable 7-pin red "control" plug to control receptacle on unified chassis (J3).
- Connect adapter cable 7-pin white "metering" plug to metering receptacle on receiver rf and i-f board.

Step 5. Set portable test set switches as follows:

- Set FUNCTION switch to RCVR position.
- Set OSCILLATOR \& METER REVERSING switch to OFF position.
- Set adapter cable SENS switch to the 100 mV position. If adapter cable has no SENS switch, unit operates at 100 mV sensitivity all of the time.
- Set adapter cable REF A-B switch to position A or position B.

Step 6. Refer to Table 4. Set test set position SELECTOR switch to positions called for in Table 4 and observe test set meter. Note that the meter readings given are minimums.

4.2.1.4 Using Built-In Station Metering

Step 1. The receiver rf and i-f board must be installed in a complete receiver for testing. Make sure the rf and i-f circuit board mounting screws are secured and that all connections to the board are properly made.

Step 2. Be sure receiver shield is in place.
Step 3. Apply ac input power to station.
Step 4. Connect station metering kit "metering" plug to the metering receptacle on the receiver rf and i-f board.

Step 5. Refer to Table 4. Set meter selector switch to the positions called for in Table 4 and observe meter. Note that the meter readings given are minimums.

4.2.2 20 dB Quieting Sensitivity Test

This performance test may be used after repair and alignment to assure that the receiver meets all specifications before it is returned to service. The receiver shield must be in place while performing this test.

4.2.2.1 Using the Portable Test Set

Step 1. Set up station and portable test set as described in Steps 1 through 5 of paragraph 4.2.1.3.

Step 2. Set portable test set MULT switch to 2 V ac position.

Step 3. Set portable test set position SELECTOR switch to position 11 (audio).

Step 4. Set test set SPKR switch to LOAD position and disconnect station speaker to silence it during test, if desired.

Step 5. On "Private-Line" stations, disable "PL'" operation by setting PL switch, (Station Control Module) to DISABLE postion (to the right).

Step 6. Adjust receiver SQUELCH control fully counterclockwise (unsquelched).

Step 7. Adjust receiver VOLUME control for 2 volts rms on test set meter.

Step 8. Connect an rf signal generator to the receiver input connector (J906).

Step 9. Adjust rf signal generator controls as follows:

- Set signal generator to produce CW (or unmodulated) signals.
- Adjust output level to maximum.
- Adjust the output frequency to the selected channel receive frequency. To adjust generator to the proper frequency, without a frequency counter, adjust generator frequency control until test set meter position 4 reads exactly "zero".

Step 10. With portable test set selector switch in meter position 11 (audio), slowly decrease the signal generator output level until the test set meter reads 0.2 V rms (20 dB down from 2 V rms). Move portable test set MULT switch to 0.2 V ac position if necessary.

NOTE
The output frequency of some signal
generators will be "pulled"' when the output level is near maximum. It may be necessary to reset generator frequency, to 'zzero'" meter 4, as the generator output level is reduced.

Step 11. Note signal generator output level. If the receiver rf and i-f board is functioning properly, this level should be 0.5 uV rms, or less, for a receiver without an rf preamplifier; or 0.25 uV rms or less, for a receiver with an rf preamplifier.

4.2.2.2 Using Built-In Station Metering

NOTE

This section substitutes a separate ac voltmeter for the portable test set meter 11 position.

Step 1. The receiver rf and i-f board must be installed in a complete receiver for testing. Make sure the rf and i-f board mounting screws are all secure and that all connections to the board are properly made.

Step 2. Be sure receiver shield is in place.
Step 3. Apply ac input power to station.
Step 4. Unsquelch receiver by turning SQUELCH control fully counterclockwise. A "Private-Line" station must also be "PL" disabled.

Step 5. Set the range switch on ac voltmeter to the 2 V ac position and connect the voltmeter across speaker terminals of the station speaker. If desired, substitute an 8 ohm, 15 watt, non-inductive resistor for the speaker. Adjust the station VOLUME control for 2 V rms as indicated on the voltmeter.

NOTE

The built-in station metering kit incorporates a dc voltmeter, not an ac voltmeter.

Step 6. Connect rf signal generator to receiver input connector (J906).

Step 7. Adjust signal generator controls as follows:

- Set the signal generator to produce a CW (or unmodulated) signal.
- Adjust output level to maximum.
- Adjust output frequency to the selected channel receive frequency. To adjust the rf signal generator to the proper frequency, without a frequency counter, adjust the generator frequency control until meter position 4 reads exactly "zero".

Step 8. Slowly decrease the generator output level until the ac voltmeter reads 0.2 V rms. Move ac voltmeter range switch to 0.2 V ac position if necessary.

NOTE

The output frequency of some rf signal generators will be "pulled" when the output level is near maximum. It may be necessary to readjust the generator frequency, to "zero" on meter 4, as the generator output level is reduced.

Step 9. Note signal generator output level. If the receiver rf and i-f board is functioning properly, this level should be 0.5 uV rms, or less, for a receiver without an rf preamplifier; or 0.25 uV rms or less, for a receiver with an rf preamplifier.

4.3 TROUBLESHOOTING

4.3.1 Visual Inspection

The first step in the troubleshooting procedure should be a thorough visual inspection of the receiver and, in particular, the receiver rf and i-f board. Corrosion, burned or damaged components are usually easily seen and may be the cause or a symptom of the receiver malfunction. Loose circuit board mounting screws, or a loose or improperly installed receiver shield are other easily found problems that can cause a considerable degradation in receiver performance.

After the "obvious" problems have been corrected, repeat the receiver rf and i-f board performance tests. If the tests still produce unsatisfactory results, refer to the receiver rf and i-f troubleshooting chart in this section. The troubleshooting chart provides a systematic procedure for isolation of the defective stage and component.

As much information as possible has been included on the troubleshooting chart. However, it will be necessary to occassionally refer to the receiver rf and i-f schematic diagram and circuit board detail. Detailed procedures regarding alignment as a troubleshooting technique, integrated circuit and AFC troubleshooting, receiver gain measurements, and crystal dip tests follow in the remaining paragraphs of this section.

4.3.2 Alignment as a Troubleshooting Technique

Low meter readings, improper discriminator output, and otherwise abnormal performance of the receiver are very often corrected by realignment. Therefore, alignment should be one of the first troubleshooting steps performed for these symptoms.

4.3.3 Troubleshooting Integrated Circuits

Integrated circuits (IC) are very reliable components and should not be replaced unless it is definitely
indicated that the IC is the defective component. Before replacing an IC, make sure that the external components in the circuit are normal.

The IC's on the receiver rf and i-f board may be checked by dc voltage measurements. Proper voltages are shown in Table 6.

Table 6.

Nominal Receiver Integrated Circuit DC Voltages (All readings are in dc volts, measured with respect to chassis ground)

Pin No.	U101 Voltage	U102 Voltage
1	GND	2.8
2	GND	GND
3	2.8	2.8
4	6.6	6.6
5	9.3	9.3
6	6.2	7.2
7	2.8	6.4
8	2.8	2.8
9	GND	2.8
10		GND

NOTE: All voltages may vary $\pm 10 \%$ from nominal readings shown.

4.3.4 Troubleshooting the AFC

To check AFC operation, perform the following test:

Step 1. Use built-in station metering (or connect a Motorola test set if so desired) to monitor discriminator output (RECEIVER quadrant, meter position 4).

Step 2. Connect an rf signal generator to the receiver input connector (J906). Set up generator to provide about 100 uV rms of unmodulated signal at the receive channel frequency.

Step 3. Insert a screwdriver or other shorting device through the AFC OFF hole in the receiver shield, shorting the plating beneath the hole to the receiver shield. Simultaneously adjust the input signal frequency for a discriminator meter 4 indication of approximately $+6 u A$.

Step 4. Remove the short. The meter indication should return to within 3 uA of zero. If it does not, the AFC is malfunctioning.

Step 5. If the AFC is malfunctioning, either components on the receiver rf and i-f board or the AFC circuitry in the channel element may be defective.

- The board may be checked by tracing the AFC error voltage from the discriminator output to the channel element. Performing Step 3 above, and then removing the short, should produce an error voltage of approximately $0.6 \mathrm{~V} \mathrm{dc} \mathrm{(+} \mathrm{or} \mathrm{-} \mathrm{with} \mathrm{respect} \mathrm{to} \mathrm{chassis}$ ground) when measured with a dc voltmeter, with a minimum of 11 megohms input impedance. Check for this error voltage at P904-15, P904-14, P904-7
and at the AFC OFF plating near the channel element.
- The channel element AFC circuitry may be checked by substituting a known good channel element.

4.3.5 Receiver Gain Measurements

A defective crystal in the i-f selectivity portion of the receiver can be located by measuring receiver gain voltages and performing crystal dip tests.

NOTE
Before making any receiver gain measurements, make sure the case of every crystal filter has a good conductive path to ground. A continuity test should indicate less than 1 ohm between the crystal case and the receiver circuit board ground plating. A bad ground connection may cause errors in gain measurements.

Step 1. Proper receiver alignment is essential to this procedure. Perform complete receiver rf and i-f alignment, as given in the Receiver Alignment portion of Station Alignment section of this manual. Leave the alignment test equipment connected to perform the following measurements.

Step 2. Refer to Table 7 for receiver gain measurements, the receiver rf and i-f schematic diagram, and the receiver rf and i-f circuit board detail diagram while performing this procedure.

NOTE

Receiver rf input voltages given in Table 7 are those at receiver input connector J906. If a pad, or other attenuator, is connected between the signal generator and the receiver rf input, the signal generator output control must be set to compensate for the loss in the pad.

Examples:

6 dB loss means: V out of pad $=1 / 2 \mathrm{~V}$ into pad.

20 dB loss means: V out of pad $=1 / 10 \mathrm{~V}$ into pad.

Table 7. Receiver Gain Measurements

Test Point (See RF \& I-F Circuit Board Detail)	Receiver Input Voltage (preset)	Test Point Voltage $\pm 6 \mathrm{~dB}$	Remarks
A	16 mV	100 mV	
B	8 mV	50 mV	
C	10 mV	50 mV	
D	15 mV	50 mV	
E	12 mV	50 mV	
F	15 mV	50 mV	
G	10 mV	600 mV	U101 max output
H	6 mV	100 mV	
I	9 mV	100 mV	
J	12 mV	100 mV	
K	11 mV	100 mV	
L	$20 \mathrm{mV}$	100 mV	
M	1 mV	750 mV	U102 max output

Step 3. Adjust rf signal generator output frequency to receive frequency (" 0 " reading on meter 4). Adjust rf signal generator output level to provide required receiver input voltage for a particular test point as listed in Table 7. Then, using an rf voltmeter, measure the if signal voltage between the test point and a nearby chassis ground point. At every test point, the measured voltage should be within $\pm 6 \mathrm{~dB}$ of the given value.

Step 4. A high or low test point voltage measurement may indicate that the crystal at, or ahead of, the test point is defective. However, it may also indicate that an associated circuit component is defective. Extremely high-Q crystals used in "Micor" radios are very sensitive to associated circuit component failure. For example, if L125 is defective, it might appear that Y102 is bad. To isolate defective component, perform crystal dip tests as described in crystal dip test paragraph.

4.3.6 Crystal Dip Test

A defective crystal in the i-f selectivity portion of the receiver can be located by measuring receiver gain voltages and performing crystal dip tests.

The monolithic crystals used in "Micor" receivers are made up of two separate resonators on a single quartz blank. Each crystal has a pair of characteristic operating frequencies. One way to find the characteristic frequencies of each crystal is to short the crystal output to chassis ground, then monitor the crystal input voltage with an rf voltmeter while varying the rf signal generator frequency, across the bandpass of the receiver. Low voltage points will occur at each of the crystal characteristic frequencies.

Figures 2 and 3 are plots of typical rf voltmeter readings obtained while testing good crystals. Note that the horizontal scales are calibrated in frequency, with Fo the channel frequency of the receiver. The vertical scales represent relative rf voltmeter readings. The bottom line
is zero and the top line is maximum. Notice that each plot has one sharp minimum point above F_{0} and another below Fo. Table 8 lists the frequencies at which these dip points should appear. If the measured dips fall outside the tolerances listed in the table, the crystal may be defective.

Step 1. Leave test equipment connected as was done for receiver gain measurements.

Step 2. If receiver uses AFC, disable AFC by connecting a jumper between test point " N " (see receiver rf \& i-f circuit board detail diagram) and chassis ground.

Step 3. Adjust the rf signal generator frequency to Fo, the receiver frequency (" 0 " on meter 4). Adjust generator output control for at least 50 mV ms at receiver input connector J906.

Step 4. Refer to Table 8. To test a particular crystal, find it in Table 8, ground the indicated test point, and connect an rf voltmeter between the monitored test point and a nearby chassis ground point.

Step 5. Starting at Fo, slowly increase the signal generator frequency, while watching for a dip in the rf ac voltmeter reading. This dip should be sharp, so increase the signal generator frequency very slowly and watch the rf voltmeter closely. When the dip is found, record the frequency counter reading.

Step 6. Return the signal generator frequency to Fo. Then watch the rf voltmeter while slowly decreasing the signal generator frequency. When the dip is found, record the frequency counter reading.

Step 7. Compare test results with the frequencies and tolerances listed in Table 8 for the crystal tested. If the measured dips fall outside the tolerances listed in Table 8, the crystal may be defective. Continue with this procedure to isolate the bad component.

Step 8. FOR TEST PURPOSES ONLY, exchange the suspected crystal with another of the same type part number) from the receiver. Be sure to note the polarity of the crystal when making the swap. Repeat receiver gain measurements and crystal dip tests with suspected crystal in new location. If the suspected crystal tests bad again, consider it defective and replace it. If the crystal tests good, look for defective associated components at the original crystal location.

Step 9. When the tests are completed, be sure all jumpers connected during the test are removed and that any exchanged crystals are returned to their original locations. Refer to the parts list and circuit board detail diagram for correct parts location. Note the crystal polarity when replacing the crystals.

Table 8. Crystal Dip Frequencies

	Test Point	Test Grounded	Point	Monitored

Figure 2. Typical Plot of a Known Good Crystal in Position Y101 or Y103

Figure 3. Typical Dip Plot of a Known Good Crystal in Position Y102 or Y104

Trouenesshortwe pereeoustrits

 8. c.

RECEIVER RF \& IF BOARD

${ }^{\text {R1 }}$	${ }^{6-124825}$	$\frac{\text { Rrsisfon, }}{\text { fixeds }}$
w2, 3	${ }_{\text {20, }}^{20.8233501}$	$\frac{\text { Cable , RE }}{\text { cid }}$
		includes; $30-83794 \mathrm{C} 01 \mathrm{CABLE}$ coaxial (4'); 9-84968D01 JACK
ws	1.80778869	
w6	B70	Pheot
		coaxial (11") and (2) $28-84967$ DOl CONNECTOR,
	now-1	ced trem
	${ }^{1-80775868}$	
		BRACKET and (3) 9-83663C01

PREAMPLIFIER

"MICOR"'‘SENSITRON" RECEIVER AUDIO \& SQUELCH BOARD

MODEEI TRNGOOGA, AV, TA

1. DESCRIPTION

The audio and squelch board performs two basic functions -- audio amplification and audio squelching. The first two stages in the audio circuitry amplify the signal from the discriminator and provide the proper frequency response. This signal is routed to the line driver module in remote control stations and to the local logic board in local control models. The audio returns through a VOLUME control. The remaining stages in the audio circuitry take the signal returning from the line driver and VOLUME control and provide the necessary frequency response at the speaker. These latter stages also provide the drive required by the final audio amplifiers (located on a separate board) for rated power output. An integrated circuit and one transistor perform all of these functions.

The squelch circuitry disables the audio path during intervals between received messages. One integrated circuit performs the necessary detection and squelching functions. Also, in conjunction with the PL decoder and filter board in a PL station, this integrated circuit provides unsquelching when PL signals are received.

2. FUNCTIONAL OPERATION

2.1 GENERAL

The audio signal from the receiver discriminator is routed to the emitter follower (refer to Figure 1). The emitter follower output is coupled to the SQUELCH control mounted on the receiver chassis or local front panel and also to the line level potentiometer mounted on the audio \& squelch board. The signal from this control is next applied to the preamplifier. If JU201 is cut, the signal is first sent through the PL filter for attenuation of the PL tone. The preamplifier output is coupled off the board to the line driver or local logic board. Audio returning from the line driver or local logic board is coupled through the appropriate VOLUME control to
amplifier Q203. After amplification, the signal is applied to the audio amplification circuits. Here, the signal is raised to a level sufficient to drive the audio power amplifiers. These are mounted on a separate board which is secured to the chassis to provide "heatsinking" capability. The output of the audio power amplifiers is applied to an output transformer which drives a speaker or speaker desk set transformer (local control stations only).

The signal returned from the SQUELCH control is applied to the squelch section for noise squelch control. Squelch action is achieved by utilizing the inherent characteristics of a discriminator known as "noise quieting'. An input signal will cause more quieting of noise as the signal level is increased. When a desired level of noise quieting is reached, as determined by the squelch circuitry and the setting of the SQUELCH control, the audio portion of the board and line driver are enabled to allow a message to be heard. In a remote control station, the squelch circuit disables the audio circuitry by shunting a point in the audio signal path to ground and also operating a series switch in the audio signal path of the line driver.

In a local control station, the series path is broken on the local logic board. In addition, an extra shunt switch is activated on this board and its low resistance is directed back to the audio amplification circuits. This provides extremely quiet operation during periods of no signal.

Upon completion of a received message, audio shut-off is either immediate or automatically delayed 150 milliseconds, depending upon the signal level of the previously received rf carrier. A strong signal produces the immediate shut-off and prevents an annoying, loud "squelch tail" burst from being heard. Weak signals (signals that produce less than 20 dB noise quieting) produce the long shut-off delay and prevent a message from being chopped under "flutter" conditions. Since the

Figure 1. Audio and Squelch Block Diagram
received signal level must be low for the long turn-off delay to occur and the "squelch tail" level is comparable to that of the received signal, the "squelch tail" is not annoying.

2.2 EMITTER FOLLOWER CIRCUIT

The emitter follower circuit provides a low impedance output which isolates the high impedance discriminator output from the following squelch and audio circuitry.

The output of the discriminator is capacitively coupled to the emitter follower input at U201-1 and may consist of noise and audio signals. The output of the emitter follower at U201-2 is routed through C207 to the SQUELCH control and also to the line level control.

2.3 PREAMPLIFIER CIRCUIT

This circuit amplifies the low-level audio signal to provide the drive necessary for proper line driver operation. In addition, a negative feedback network (C208 and C209) provides the necessary frequency response characteristics for phone line operation. In PL stations, jumper JU202 is cut and the negative feedback is provided by C209 only. The network of R210 and C210 provides additional frequency response shaping.

2.4 AMPLIFIER CIRCUIT

Transistor Q203 increases the signal level from the line driver or local logic board to the level required by
the audio amplification circuits. Jumper JU203 is out when the equipment leaves the factory. The gain of Q203 is sufficient to drive the audio amplification circuits if the signal strength from the line driver or squelch gate exceeds -10 dBm . With a signal strength below this level, it is advisable to put in JU203 which increases the gain of Q203. The RC network at the input to this stage provides additional frequency response shaping required at the speaker.

2.5 AUDIO AMPLIFICATION CIRCUIT

The signal from amplifier Q203 is applied to the differential amplifier thorugh capacitors C211 and C213. In a local station, the extra shunt switch on the local logic board is connected to the junction of C211 and C213.

The differential amplifier output provides the drive for the complementary amplifier. Resistors R221 and R220 form a voltage divider, biasing the differential amplifier at one-half of the supply voltage. Undesirable transient voltages are eliminated by capacitor C212.

Final audio amplification, on the audio and squelch board, occurs in the complementary amplifier. These stages provide the drive for the audio power amplifiers which are mounted on a separate board. The complementary amplifier emitter resistors (R218 and R219) are not included in U201 because of their high heat dissipation requirements.

Audio returned to the audio and squelch board (from the audio power amplifiers) is applied to the output transformer primary windings. This transformer consists of four windings -- two input primaries, an output secondary, and a feedback secondary. The output secondary winding couples audio power to an external 8 -ohm speaker which can be driven with up to 10 watts at less than 5% distortion. Negative feedback from the output transformer winding through C216 and across R211 gives 6 dB per octave de-emphasis (roll-off) to the audio which has been pre-emphasized 6 dB per octave in the transmitter. Below 300 Hz , feedback from R213 and across C215 increases, giving low frequency deemphasis. Capacitor C238 rolls off the high frequency gain of the amplifier to prevent high frequency oscillation. Capacitors C223 and C224, C240, C241, and C242 are rf bypass capacitors that shunt stray rf on the audio A + and audio A- lines to ground. In local operation, the output secondary winding couples audio power to a 16 -ohm speaker and an autotransformer. This transformer will drive up to six local desk sets.

2.6 NOISE ACTIVATED SQUELCH CIRCUIT

2.6.1 Squelch Input Circuit

The input signal from the SQUELCH control may consist of audio and noise. An input shaping network precedes U202 and passes high frequencies while attenuating low frequencies. Allowing the high frequencies to pass eliminates the effect of voice and results in more sensitive threshold squelch action.

The first amplifier and limiter is driven into limit by its input signal and prevents audio from squelching (disabling) the audio channel on voice signals. Amplified, limited noise is then passed through a coupling network to the second amplifier. This coupling network is also a high pass filter which further attenuates voice and tone signals to the second amplifier.

The second amplifier amplifies the noise signal and applies it through an RC coupling network to the detector. Capacitor C233 and C234 form another high pass filter that further attenuates the low frequencies. Capacitor C234 is used to produce a peak-to-peak detector action from the noise detector, and thus, generate twice the output voltage of a peak detector. This capacitor does not affect frequency response.

2.6.2 Detector and Switching Circuits

The detector output level is a function of received signal strength and the setting of the SQUELCH control. The detector develops the de output voltage across filter capacitor C235. The lowest dc output voltage corresponds to a no signal input (maximum noise) condition. The output voltage increases as the received rf carrier signal level increases (noise decreases).

The primary function of the detector output, however, is the control of shunt switching. This is done by applying the detector output to three squelch control circuits simultaneously:

> -- long "‘squelch tail’" circuit,
> -- long "‘squelch tail" defeat switch,
> -- carrier squelch switching logic.

With no received rf carrier signal (maximum noise condition), the long "squelch tail" circuit and long "squelch tail"' defeat switch are off and the carrier squelch switching logic is on. The audio channel is subsequently disabled, unless the squelch control logic is overridden by other circuitry.

As the input signal level increases (noise decreases), the detector output voltage increases. A detector output voltage above 2.8 volts dc results in enabling of the long "squelch tail" circuit. The long "squelch tail" circuit produces a voltage at U202-12 of 5.5 volts dc; this voltage causes the carrier squelch switching logic circuit to turn off and thereby enabling the audio channel. Capacitor C236 and resistor R235 provide a rapid-rise, slow-decay time constant to the voltage applied to the carrier squelch switching logic circuit. This permits a weak signal to immediately enable the audio channel, yet delays the audio channel shut-off if the signal is in a "flutter" condition. The voltage necessary to enable the carrier squelch switching logic is approximately 3.8 volts dc.

A voltage greater than 5 volts dc at the detector output (rf carrier signal level that produces 20 dB quieting or better with the SQUELCH control set at threshold), turns the long "squelch tail" defeat switch on. This disables the long "squelch tail" circuit and the 150 millisecond delay function. Audio channel disabling now occurs immediately after the rf carrier disappears.

2.6.3 Squelch Output Circuit

The squelch control logic circuit directly controls the shunt switches.

The output of the squelch control logic circuit depends upon the output of the preceding carrier squelch switching logic circuit. With the carrier squelch switch logic circuit off, the squelch control logic circuit will turn the shunt switches off, allowing a message to be heard. If the carrier squelch switch logic is on, the squelch control logic circuit will turn the shunt switches on, disabling the audio channel, and activating the series switches in the line driver or local logic board. Capacitor C237, connected to U202-10, slows the turnoff of the shunt switches to "soften" what would otherwise be any annoyingly abrupt turn-on of the audio. This same point (U202-10) supplies a digital output voltage that can be used as an indicator that the receiver is unsquelched (audio channel enabled).

Two additional functions that may affect the squelch control logic ouput are associated with 'Private-Line" operation. PL disable (U202-14) may be either shorted to ground or open. When an open is present at U202-14 (PL disabled), a received signal with or without a PL code will be heard from the speaker. When at ground potential (PL enabled), the output of the carrier squelch switching logic circuit is inhibited. When the proper PL code is received, a +9.5 volts dc from the PL decoder board to U202-8 turns the squelch control logic circuit off which turns the shunt switches off and allows a message to be heard. Jumper JU204 is normally in the circuit and is only cut when a field modification is made. The cutting of this jumper and associated modifications on the receiver interconnect board will provide "AND SQUELCH" operation, changing the PL squelch circuitry from fixed sensitivity operation to variable sensitivity operation. Under this mode of operation, the SQUELCH control will affect the squelch sensitivity.

Audio disabling is performed by shunting the audio circuit to ground through a low impedance path and also by the operation of a series switch in the line driver or local logic board. When the solid state shunt switch is turned on (U202-7), signals developed across R236 are shunted to ground. This prevents any signals from being heard at the speaker. Acting in tandem with the first shunt switch, the second shunt switch output is routed to the line driver or local logic board and enables a set of switches on either of the boards. In a remote control system, this breaks the audio path and prevents audio from appearing on the 600 ohm line. In a local control system, these series switches also break the audio path, thus preventing any audio or hum and noise from reaching the speaker.

3. MAINTENANCE

3.1 GENERAL

This section of the manual provides maintenance shop type procedures for the audio and squelch board. It assumes that preliminary tests have already localized the trouble to this board. These bench tests include procedures for testing and troubleshooting, including integrated circuit check-out.

NOTE

The audio and squelch board must be installed in a station for testing to provide the necessary power and ground connections.

3.2 PERFORMANCE TESTS

The performance test may be used for troubleshooting to isolate the point of abnormal operation. They may also be used after repair to assure that the board is operating properly before it is returned to service.

3.2.1 Audio Amplification

3.2.1.1 Specifications

The audio section of the audio and squelch board combined with the separate audio power amplifier transistors will provide at least 10 watts (5 wattts local) audio output at less than 5 per cent distortion from a 3.0 kHz deviated, 1 kHz modulated on-frequency signal applied to the station antenna receptacle.

3.2.1.2 Procedure

Step 1. Replace the speaker with an 8 ohm, 15 watt non-inductive resistor. In local control stations, disconnect the autotransformer.

Step 2. Set the SQUELCH control fully counterclockwise (unsquelched). "Private-Line" stations must also be PL disabled.

Step 3. Connect an rf signal generator to the station antenna receptacle and adjust it to the receiver frequency.

Step 4. Adjust the signal generator for 1000 microvolt output, modulated with 1000 Hz tone at $\pm 5.0 \mathrm{kHz}$ deviation.

Step 5. Connect an AC voltmeter to pin J903-7 at the receiver interconnect board.

Step 6. Adjust the line level control R203 for 175 mV ac rms.

Step 7. Reduce the deviation to $\pm 3.0 \mathrm{kHz}$.
Step 8. Connect an AC voltmeter across the 8 ohm resistor.

Step 9. Adjust the VOLUME control until 9.0 volts ac rms is read on the ac voltmeter (this represents 10 watts).

Step 10. Measure distortion at 10 watts audio power output. It should be less than 5%

3.2.2 Squelch Control

3.2.2.1 Specifications

3.2.2.1.1 The squelch section of the receiver audio and squelch board shall enable the audio section when an rf signal level greater than 6 dB noise quieting (one-half the discriminator output level with no signal input) is applied to the receiver with the SQUELCH control set at threshold. When the signal is removed from the station, the audio channel shall become disabled after approximately 150 milliseconds. When an
input signal greater than that required for approximately 20 dB noise quieting is removed from the station, the audio channel shall become disabled immediately.

3.2.2.1.2 When the SQUELCH control is turned fully

 clockwise (tight squelch) an input signal that produces about 20 dB noise quieting shall be required to enable the audio channel.3.2.2.1.3 The squelch section shall inhibit audio output when no input signal is received.
3.2.2.1.4 In "Private-Line"' stations, the squelch section of the receiver's audio and squelch board shall perform as described in paragraphs 3.2.2.1.1, .2, and .3 while the radio set is PL disabled.
3.2.2.1.5 In PL operation, the squelch section shall inhibit audio output when the proper PL code is not received, regardless of the input signal strength.

3.2.2.2 Procedure

3.2.2.2.1 Carrier Squelch Stations

Step 1. Turn the station on and adjust the SQUELCH control clockwise from the full counterclockwise position until the receiver just quiets (threshold squelch).

Step 2. Measure the resistance of U202-6 and -7 with reference to ground. Both pins should be less than 1000 ohms.

NOTE
Erroneous readings will be obtained in resistance measurements if the voltage between the ohmmeter probes exceeds approximately 5.0 volts dc.

Step 3. Connect a signal generator to the station antenna receptacle and adjust it to the receiver frequency. Modulate the generator output with a 1000 Hz tone at $\pm 3.0 \mathrm{kHz}$ deviation.

Step 4. Increase the signal generator output slowly until the receiver just unsquelches. Remove the modulation from the signal generator. Unsquelching should occur at a generator output that produces 6 dB noise quieting, or less.

Step . 5 Measure the resistances of U202-6 and -7 with reference to ground. Both pins should be greater than 200,000 ohms.

Step 6. Increase the signal generator output until approximately 12 dB noise quieting is obtained. Remove the rf signal from the station input either by turning off the signal generator or by using a relay in series with the signal generator output. A long "squelch tail" should occur. If a calibrated, triggered sweep oscilloscope is
available for measurement, the duration of the "squelch tail" should be approximately 150 milliseconds as measured at the speaker.

Step 7. Increase the signal generator output to produce 30 dB noise quieting. Turn off the rf signal and note the "squeich tail" duration. It should be no more than a "click". The duration should be less than 10 milliseconds.

Step 8. Turn the SQUELCH control fully clockwise (tight squelch).

Step 9. Adjust the signal generator output level until the station just unsquelches. Unsquelching should occur at a generator output that produces approximately 20 dB noise quieting.

3.2.2.2.2 "Private-Line"'Stations

Step 1. Disabled the PL circuitry.
Step 2. Perform previously described carrier squelch station procedure.

Step 3. Return the station to PL operation. On stations using "AND" squelch operation, also turn the SQUELCH control fully counterclockwise during this test.

Step 4. Vary generator output between minimum output and 1000 microvolt output while checking the resistances of U202-6 and -7 with reference to ground. Both resistances should remain at less than 1000 ohms.

Step 5. Modulate the on-frequency generator output with a PL code for ± 0.5 to $\pm 1 \mathrm{kHz}$ deviation and 1000 Hz tone for $\pm 3.0 \mathrm{kHz}$ overall deviation.

Step 6. Increase the signal generator output slowly until the receiver just unsquelches. Unsquelching should occur at a generator output that produces 6 dB quieting, or less.

3.3 TROUBLESHOOTING

3.3.1 Check Input Voltages

A malfunction in the audio and squelch operation may be due to the loss of dc input voltages which can be caused by this board or another section of the station. Since there are only two input voltages applied to this board, it is advantageous to verify their presence before beginning extensive troubleshooting.

$$
\begin{array}{ll}
\text { P903-1, -4 } & \begin{array}{l}
+9.6 \mathrm{~V} \mathrm{dc} \mathrm{with} \\
\text { respect to chassis }
\end{array} \\
\text { P903-16 } & \begin{array}{l}
\text { Audio A+ } \\
\text { (approximately } \\
+13.6 \mathrm{~V} \text { dc with } \\
\text { respect to A-) }
\end{array} \\
& \begin{array}{l}
\text { and }
\end{array} \\
\hline
\end{array}
$$

In a negative ground system audio A - is at chassis potential. In a positive ground system, audio A+ is at chassis potential.

3.3.2 Isolating Defective Components

If tests indicate abnormal performance, a logical troubleshooting procedure should be followed to isolate the defective component efficiently. Results of performance test usually localize the malfunction to one or two stages. The accompanying troubleshooting chart summaryizes these results in a logical sequence. A few waveforms, voltage and resistance checks in the suspected circuit should readily isolate the defective component when compared with those on the schematic diagram.

3.3.3 Troubleshooting Integrated Circuits

Integrated circuits (IC's) are very reliable components and should not be replaced until all checks have proven definitely that the IC is the defective component. Make sure that the external components in the circuit are normal. The IC's on the audio and squelch board may be checked by dc voltage measurements although signal tracing with an oscilloscope is preferred.

3.3.4 Stage Gain Measurements

3.3.4.1 Squelch Circuitry

3.3.4.1.1 This troubleshooting procedure may be used to isolate a squelch malfunction occuring before the detector to a specific state. The test is performed by injecting an ac signal at the input to the squelch circuitry and noting results obtained with an ac voltmeter. Most accurate results are obtained by taking dB gain and loss measurements between points as illustrated in Figure 2. Individual point voltage checks may also be used to quickly verify proper squelch input circuitry operation but this is not an adequate test to prove the circuitry is defective (refer to the following table and Figure 2). Tolerance addition may cause increasing variation from the typical readings in the table
as readings are taken further from the injected signal point.
3.3.4.1.2 The following procedure may be used for loss and gain or signal level measurements while injecting a 3 kHz or 30 kHz signal. In "PrivateLine'" radios, PL operation will not affect this test.

Step 1. Turn the VOLUME control fully counterclockwise (off), or to a comfortable listening level, if desired.

Step 2. Turn the SQUELCH control fully clockwise (squelched) and turn the station on.

Step 3. Inject a 1000 microvolt, on-channel signal at the station antenna receptacle. This "quiets" the discriminator output and prevents erroneous test readings.

Step 4. Inject a $3 \mathrm{kHz}, 10$ millivolt rms signal at the receiver audio \& squelch board at P903-9.

Step 5. Take loss and gain measurements or signal level measurements as required.

Step 6. Repeat the preceding test using a 30 kHz signal in place of the 3 kHz signal in Step 4.

3.3.4.2 Audio Circuitry

$A C$ voltage measurements and waveforms are given where applicable on the schematic diagram. Refer to this diagram for pertinent information when taking audio stage gain measurements.

AC Voltmeter Connected to U202-Pin	AC Voltmeter Reading with 3 kHz Signal Input (mV)	AC Voltmeter Reading with 30 kHz Signal Input ($\mathbf{m V}$)
15	3.5	9.5
1	40	110
2	7	85
3	80	950
4	24	750

Figure 2. Squelch Circuitry Stage Gain Measurements
"MICOR" "SENSITRON"
UHF RECEIVER
AUDIO \& SQUELCH BOARD
MODEL TRN6006A, AV, 7A

MOUELCH BOAR

PARTS LIST SHOWN ONBACK

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

PARTS LIST

LEGEND

$\mathrm{L}=25-50 \& 72-76 \mathrm{MHz}$
$\mathrm{H}=132-174 \mathrm{MHz}, 406-450 \mathrm{MHz}, 450-512 \mathrm{MHz}$
TRN6007A Receiver Audio \& Squelch Board
($25-50 \& 72-76 \mathrm{MHz}$)
TRN6006A Receiver Audio \& Squelch Board
($132-174 \mathrm{MHz}, 406-450 \mathrm{MHz}, 450-512 \mathrm{MHz}$,
PL-3269-F
This parts list covers two models of the Receiver Audio $\&$ Squelch Board. Where differences exist a letter suffix L
H is added to the reference symbol to show the applicable unit.

		$\begin{aligned} & \text { CAPACITOR, fixed; } \mathrm{UF} ; \pm 10 \% \text {; } \\ & 100 \mathrm{~V} ; \text { unl. stated } \end{aligned}$
C201	23-83210A01	25+150-10\%; 25 V
C202	23-82783B36	39; 10 V
C203	23-84762H10	$22 \pm 20 \% ; 15 \mathrm{~V}$
C204	$8-83813 \mathrm{Hl} 2$. 0047
C205	8-83813H11	0.22; 75 v
C206	8-83813H29	0.33; 50 V
C207	23-82783B24	15; 25 V
C208	8-83813H01	. 0068
$\begin{aligned} & \mathrm{C} 209 \\ & \mathrm{C} 210 \mathrm{~L} \end{aligned}$	8-83813H26	$.0056 \pm 5 \% ; 50 \mathrm{~V}$
C210 ${ }^{\text {C }}$	8-82905G45	.082; 50 V
C211	8-83813 ${ }^{\text {H11 }}$	0.22; 75 v
C212	21-848236	$650 \mathrm{pF} \pm 5 \%$; 500 V
C213	8-83813H11	0.22; 75 V
C214	23-84081803	$75+150-10 \% ; 15 \mathrm{~V}$
C215	8-83813H11	0.22; 75 V
C216L	21-82187B20	1000 pF
C216H	21-82187B31	1500 pF
C217	21-82187B43	.0039; 200 V
C218	$8-83813 \mathrm{Hll}$	0.22; 75 V
C219		NOT USED
C220	21-83406D46	$56 \mathrm{pF} \pm 5 \%$; 500 V ; N150
C221	23-84081B01	$50+100-10 \% ; 25 \mathrm{~V}$
C222	23-83210A08	100+150-10\%; 25 V
C223, 224	21-82372C04	. $05+80-20 \% ; 25 \mathrm{~V}$
C225	8-82905G16	. 033
C226	21-859942	$220 \mathrm{pF} \pm 5 \%$; 500 V
C227	8-83813H07	0.15; 75 V
C228	21-84426B63	$1500 \mathrm{pF} \pm 5 \%$
C229	23-84762H07	$4.7 \pm 20 \%$; 10 V
C230	21-84426B06	$100 \mathrm{pF} \pm 5 \%$; 500 V
C231	21-84493B05	$1000 \mathrm{pF} ; 200 \mathrm{~V}$; N2200
C232	21-82133G03	$100 \mathrm{pF} \pm 5 \%$; 500 V ; N750
C233	21-84426B11	$470 \mathrm{pF} \pm 5 \% ; 500 \mathrm{~V}$
C234	8-83813H31	. $01 ; 100 \mathrm{~V}$
C235	8.83813 Hll	0.22; 75 V
C236	23-84762H08	3. $9 \pm 20 \% ; 15 \mathrm{~V}$
$\underline{237}$		NOT USED
C238	21-82372C01	0.1 +80-20\%; 25 V
C239	21-83596E10	$220 \mathrm{pF} \pm 20 \% ; 500 \mathrm{~V}$
C240	21-832501	. $01+60-40 \% ; 250 \mathrm{~V}$
C241, 242	21-83596E10	$220 \mathrm{pF} \pm 20 \% ; 500 \mathrm{~V}$
C243	21-832501	. $01+60-40 \% ; 250 \mathrm{~V}$
C244	21-82133G03	$100 \mathrm{pF} \pm 5 \%$; 500 V
C245, 246		NOT USED
C247	21-832501	. $01+60-40 \% ; 250 \mathrm{~V}$
C248 thru 250	21-83596E10	$220 \mathrm{pF} \pm 20 \% ; 500 \mathrm{~V}$
C251	21-84426B11	$470 \mathrm{pF} \pm 5 \%$; 500 V
		DIQDE: (SEE NOTE)
CR201	48-83654H01	silicon
		CONNECTOR, plug:
P201		consigts of contact pins mounted on circuit board
Q203	48-869642	$\frac{\text { TRANSISTOR: }}{\text { NPN: type M9642 }}$
		$\frac{\text { RESISTOR, fixed: } \pm 5 \% ; 1 / 4 \mathrm{~W} \text {; }}{\text { unl. stated }}$
R201, 202	6-124A61	3.3 k
R203	18.83083G24	variable: $25 \mathrm{k} \pm 30 \%$
R204	6-124C05	$15 \pm 10 \%$

| REFERENCE |
| :---: | :---: | :---: |
| SYMBOL | | MOTOROLA |
| :---: |
| PART NO. |\quad DESCRIPTION

R205	6-124A49	1 k
R206	6-124A93	68k
R207	$6-124 A 99$	120 k
R208	6-124A73	10k
R209	6-124C17	$47 \pm 10 \%$
R210	6-124A51	1.2 k
R211	6-124A63	3. 9 k
R212	$6-124 \mathrm{~A} 49$	1 k
R213	6-124C97	$100 \mathrm{k} \pm 10 \%$
R214	6-124A 89	47k
R215	6-124A49	1 k
R216	6-124A57	2. 2 k
R217	6-124C01	$10 \pm 10 \%$
R218, 219	6-124A09	22
R220, 221	$6-124 \mathrm{~A} 7 \mathrm{I}$	8. 2 k
R222	6-124A95	82 k
R223	$6-124 \mathrm{~A} 83$	27k
R224	6-124A 45	680
R225, 226	6-124C17	$47 \pm 10 \%$
R227, 228	6-124A61	3. 3 k
R229thru 231		NOT USED
R232	6-124A81	22k
R233		NOT USED
R234	6-124A83	27k
R235	6-124D04	$180 \mathrm{k} \pm 10 \%$
R236	6-124C89	$47 \mathrm{k} \pm 10 \%$
R237	6-124A81	22k
		TRANSFORMER, AF:
T201	25-84083B02	pri: split winding; total res 0.5 Ohms max sec: res 0.8 Ohms max feedback: res 2 Ohms max
		$\frac{\text { INTEGRATED CIRCUIT: }}{(\mathrm{SEE} \text { NOTE) }}$
U201	$51-82848 \mathrm{M} 70$	type M4870
U202	$51-84561179$	type M6 179
		DIODE: (SEE NOTE)
VR1	48-82256C38	Zener; 9.1 V; 400 mW
NON-REFERENCED ITEMS		
	$\begin{aligned} & 42-84284 B 01 \\ & 3-138162 \end{aligned}$	RETAINER; 4 req'd. SCREW, tapping: Phillips rd. hd., 4-40 $\times 3 / 8^{\prime \prime}$; 4 req'd. (used for mounting Retainers)
	$55-84300 \mathrm{B01}$	HANDLE (long)
	$55-84300 \mathrm{B02}$	HANDLE (short)
	$29.84028 \mathrm{H01}$	TERMINAL, contact; 18 req'd. (long)
	29-84028H02	TERMINAL, contact; 24 req'd. (short)

NOTE: Replacement diodes and transistore must be ordered by Motorola part number only for optimum performance.

1. DESCRIPTION

The audio power amplifier provides the required power to drive an 8 -ohm speaker with 10 watts of audio power, or a 16 -ohm speaker with 5 watts of audio power, with less than 5% overall distortion. Two complementary power transistors (NPN and PNP types), operating class AB , with two current limiting resistors, develop this power. The audio drive from the audio and squelch board is routed to this board, amplified, and then returned to the audio and squelch board, where it is applied to the audio output transformer.

The aluminum transistor mounting plate is anodized with a thin, very tough material. This mounting plate provides excellent electrical insulation and thermal conduction properties between the transistors and the heatsink.

2. SERVICING

a. Performance Checks

Performance checks on this board consists of taking resistance readings as is done for any transistor or resistor. It should be noted, however, that many VTVM's and solid-state multimeters do not have sufficient voltage at the test probes to forward bias a transistor junction into conduction and, therefore, should not be used. An inexpensive volt-ohm meter of 1,000 to 20,000 ohms-per-volt sensitivity is sufficient for performing these checks.

NOTE

Do not insert meter test probe tips into female connectors on the board. To do so could cause damage to the connectors and result in poor electrical interconnection with the audio and squelch board.

b. Transistor Replacement

Care must be exercised to prevent damage (such as a scratch) to the mounting plate anodizing at the transistor-mounting plate interface. Should the anodizing in this area become scratched, original performance can only be restored by the use of a new anodized plate. The plate can not be "repaired" by the use of any type of insulating washer without a loss in thermal conduction capability.

Factory replacement transistors are supplied with pre-formed leads to properly fit onto the aluminum mounting plate and circuit board. A new nylon shoulder washer is also included.

Step 1. Apply a thin, even coat of silicon grease to the metallic area of the transistor.

Step 2. Mount the transistor using the new nylon shoulder washer. Do not solder leads at this time. Tighten the transistor mounting screw.

Step 3. Solder transistor leads to printed circuit board.

TRANSISTOR RESISTANCE MEASUREMENT CHECK
(BOARD REMOVED FROM RADIO - TRANSISTORS MOUNTED ON BOARD)

	Ohmmeter Connections	Proper Resistance	
Positive Lead Connected to	Negative Lead Connected to	P-N-P Transistor	N-P-N Transistor
Base	Emmitter, then Collector	Infinite	$5-30$ Ohms, Both Cases
Emmitter, then Collector	Base	$5-30$	Ohms, Both Cases

Failure to obtain these results indicates a defective transistor which must be replaced.

AUDIO POWER AMPLIFIER

FUNCTION

-- Provides up to 10 watts audio output

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

AUDIO POWER AMPLIFIER

Motorola No. PEPS-28290-O 4/15/79- PHI
finctional oferation

1. General
. ${ }^{\text {"pl. Tone Presen }}$

㫦

 1.2 "PL" Tone Absem

22 DECODER INPUT CIRCUITS

2.4 "vibrasponder" ReSonant reed

dary winding.

andem

LATER VERSION

 function

"PL" DECODER WAVEFO

MECHANICAL PARTS LIST

${ }_{\text {rrsm }}$	mororola	descriprion
1	9.8301 H01	TERMMAL, pin: fem
2	${ }^{42}$-841, 6801	
${ }_{4}$	42 -82884801	

maintenance
a. Recommended Test Equipment
(1) Motorola R1010 Series RF Signal Generator.
This solid-state unit provides receiver rf carrier signals. (2) Motorola SLN N 221 A "PL" Tone Generator
 ccuratly sel to the deocoder frequency. However, to counter. while the signal is measured on a frequency
cher
(3) Motorola Solid-State Oscilloscope for tone
ignal measurement. Some measurements may be taken
(4) Motarola Solid-State DC Multimeter for dc
volage measurements.
. Performance Tests

(2) Modulate the signal generator output
$\pm 0.5 \mathrm{kHz}$ with a PL tone of the frequency stampect on

(3) the proper foluency
(3) Also modulate the signal generator with an
aucio tone in the 300 to 03000 Hz range at $\pm 3.3 \mathrm{KHz}$.
 on the semeaker. No omere than 0.25
required ans onvelch the reciver.
c. Troubleshooting

(1) Testing the "Yibrasponder" Resonan Reed One of the first tests should be a check of the

 Approximately 75 millivolts rms should be measured.
the reed is good, continue with other decoder tests.
(2) Decoder Testing

 Otherwise, noise and P Ltone wiull het reeiver noise
will produce erroneus readings. be present and

The "PL" decoder can
 and plyged on the front or circuiry side
of the audio board. Parallel-connected
ops pins have been provided for ease of servic-
ing. Remove hea audio board shield for
access to these

parts list		
		coid
cimid		coick
come		cosem
		DIODE：（SEE NOTE）
ciction		
\％ois	边	价，
	ssas	
	48.8898	$\underbrace{\text { RNP ¢，\％p wess }}$
coin		
		coiz
coicle		
	cose	${ }^{\text {and }}$
cis		
	，	
${ }_{\text {rex }}^{\text {risol }}$	coseme	
$\underbrace{\substack{\text { ubom }}}_{\text {Usol }}$		
vso	．．．rasasen	
${ }^{2301}$	边	

HANDLING PRECAUTIONS FOR CMOS INTEGRATED CIRCUITS Many of the integrated cir cuit devices used in communi cations equipment are of the CMOS
(Complementary Metal Oxide Semiconductor) type. Because of their high open circuit impedance,
 Ea Even though protection devices are provided in CMOS IC inputs, the protection is effective only against ove circuit elements distribute static charges and toad the cMOS circuits, decreasing the chance
a systen, of damage. However, CMOS circuits can be damaged by improper handling of the modules even in a
Fo avoid damage to circuits, observe the following handing, shipping, and servicing precautions

To avoid damage to circurts, observe the following hanaiing, shipping, and servicing precaution

Whenever possible avoid touching any electrically conductive parts of the circuit module with
your hands.

(4) When servicing a ar circuit module, avoid carpeted areas, dry environments, and certain types
of clothing (silik, nylon, etc.) because they contribute to stataic buildup.

(6) If a circuit modute is removed from the system, it is desirable to lay it on a conductive sur.
face (such as a sheet of aluminum foil) which is connected to ground through a resistance of face (such as a shee
approximately 100 ok .
warning

(7) When soldering, be sure the soldering iron is grounded.
8) Prior to connecting jumpers, replacing circuit components, or touching cMOS pins (if this
becomes necessary
bin the replacement of an integrated circuit device), be sure to discharge
 he human oody, it is recommended that only one
no the CMOS device and a s sociated board wiring.
9) When replacing a cMos integrated circuit device, Leave the device in its metal ra:l container
or conductive foam until it is to be inserted into the printed circuit module.

"digital private-line" decoder board roubleshooting char

Notes o obtain a test code for the following procedure apply a car rier frequency signal to the reeciver
input from an rf signal generator modulated by the code output of a Motorola sLNN 4113 A "Digital

2.

If proper decode is indicted, U80t of the test set.
CMos handling precautionst be replaced. If U801 must be replaced, refer to the

MPTOM	Probable CaUSE	ACTION
	1. Audio squelch is malfunction- ing.	
	2. No 50 kHz clo	Check U80l-4 for 50 kHz clock pulses. Rise time must be $\leq 750 \mathrm{n}$ sec
	3. Audio enable switch is malfunctioning.	If U801-7 is high, but circuit board pin 5 is low when receiving code, replace Q810.
	4. Dump pin U80l-1 is always high.	Check U801-1 should always be
	5. Wrong or bad code plug.	Replace with a known good code plug. Check U801-15 through $801-23$ for Check U801-15 through U801-23 for proper octal code.
	No data into U801.	Check U801-11 for 0-6 V pulses If pulses are not present, check Q806 and U802 operation.
	7. Transmit code enable input is high.	circuit on the encoder board.
	8. U80l has an internal malfunction.	If, after checking causes 1 through 7, isolated, replace U80l. CAUTION U801 is a CMOS device and may be damaged by improper handling. Refer to the CMOS handling pre- cautions in this instruction section
Excessive decoder falsing when monitoring an inact channel (noise fall ining).	1. Precision current source s low or inoperative	

SYMPTOM	BLE CAUSE	TION
	2. Current source disable switch is always on.	Check for $8-10 \mathrm{~V}$ at $\mathrm{Q809}$ collector.
	3. Improper 140 Hz low pass filter response.	
	4. U802 supply voltage is too high.	Check U802-10 for $+10.4 \mathrm{~V} \pm 0.2 \mathrm{~V}$ dc. If voltage is high, troubleshoot the +10.4 V regulator on the decoder board.
	1. Turnmoff code not being transmitted by other radio unit.	Monitor circuit board pin 4 (DATA IN) for presence of turn-off code at ends of transmissions.
	2. U802 lock-in malfunction	Ground Q809 collector. With a 300 mV $\mathrm{p}-\mathrm{p}$ signal at circuit board pin 4 (DATA IN), the waveform at U802-4 should be locked in to the input signal up to at least 175 Hz . If proper lock-in does not occur, replace C 809 , then check lock-in again. If lock-in is still bad, replace U802.
	3. U80l turn-off code detector is malfunctioning.	Check U801 (Note 2).
Poor detector sensitivityin poor quieting conditions	1. Improper 140 Hz low pass filter response response.	Check dc voltages in filter circuit. Check the filter frequency response: measured at Q803 emitter, the filter response should be -1.0 to -4.0 dB at 134 Hz and -12 to -15 dB at decoder input.
	2. Precision current source supplying too much current to U802-8.	
	3. Current source dis sable switch inoperative	While detecting a valid code, check 0809 collector for 0 V dc. If $8-10 \mathrm{~V}$ Q809 collector for 0 V dc. is present, replace Q 809 .
Occassional squelch tail about 1 second after the end of a transmissio from another radio	Current source disable switch is staying on too long.	squelch disable

Norss
Moctis

TRN6718A Power Supply Chassis (60 Hz)
TRN6731A Power Supply Chassis $(50 \mathrm{~Hz})$

note:
For optimum performance, diodes, transistors, and
integrated circuits must be ordered by Motorola part integrates
numbers.

$\left.\begin{array}{|c|c|c|}\hline \text { REFERENCE } \\ \text { SYMBOL }\end{array} \begin{array}{c}\text { MOTOROLA } \\ \text { PART NO }\end{array}\right]$ DESCRIPTION

PARTS LIST

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

TLN5123B Chassis and Hardware Kit (P/O TPN1110B) TLN5123A Chassis and Hardware Kit (P/O TPN1110A) PL-2417-H

NOTE:
For optimum performance; diode and transistor replacement parts must be ordered by Motorola part number only.

REVISIONS			$68 \mathrm{P} 81020 \mathrm{E} 44-\mathrm{N}$ LOCATION
CHASSIS AND SUFFIX NO.	REF. SYMBOL	CHANGE	
TINS 122A-1	Q7	FROM 48-869648, M9648 TO 48-869706, M9706	13.6 V SERIES REGULA TOR
	28	$\begin{aligned} & \text { FROM } 48-869642, \\ & \text { M9642 TO 48-869594, } \\ & \text { M9594 } \end{aligned}$	
	$\begin{array}{\|l\|} \hline \text { C } 11,13 \\ \text { THRU } \\ 16,20, \\ 22, \\ \text { THRU } \\ 25 \\ \hline \end{array}$	FROM: 21-82187B20; .001 UF TO: $21-82187 \mathrm{B29} ;$.001 UF	PARTS LIST
TLNS $123 \mathrm{~A}, \mathrm{~B}$	Cil	FROM 8-84717GOI TO 8-82705M0:	TI RESONANT windivg

[^0]: 8.1 .2

 The primary ac power line may be installed prior to installation of the

[^1]: Unkey transmitter. Disconnect wattmeter and dummy load. Replace the Power Control board shield. This completes the PA Power Setting Pro-

[^2]: When the exciter is used in "Private-Line" stations, a "Private-Line" encoder circuit board is plugged directly into the mating pins of the exciter; and one jumper (JU401) is removed from the exciter; no interconnecting wires are used. The exciter board also includes additional pins that permit the board to be used with certain types of optional equipment. These pins are designated P403 on the exciter schematic diagram.

[^3]: I. The "Vibrascoder" Resonant Reed (Model KLN62 10A)
 is not a part of the encoder board. When ordering a

