## DIGITAL AUDIO DELAY MODULE (DADM) INSTRUCTIONS

Thank you for purchasing the ICS Digital Audio Delay Module!

## PRODUCT DESCRIPTION

The Digital Audio Delay Module (DADM) is an enhanced replacement for the original S-COM $\mathrm{ADM} / \mathrm{K}, \mathrm{ADM} / \mathrm{U}$, and competitive audio delay units. It has the same dimensions, mounting hole locations, and connector as the original design, and offers improved frequency response and signal-to-noise ratio. In addition, the DADM has an on-board audio gate, which allows it to become a stand-alone squelch tail eliminator.

## SPECIFICATIONS

Delay: Dipswitch-selectable from 12 to 197 milliseconds (approx.) in 16 steps

| Audio Input: | 2 V peak-to-peak ( 0.7 Vrms ) nominal, <br> 4 V peak-to-peak (1.4 Vrms) maximum. <br> 100K ohms input impedance, AC coupled. <br> Source impedance should be less than 5 K ohms. |
| :--- | :--- |
| Audio Output: | Output Level is the same as input level (gain $=1)$. <br> 100 ohms (approx.) output impedance. |
| A push-on jumper selects either DC coupling (for ICS and S-COM <br> controllers), or AC coupling (for other controllers). |  |

Frequency Response: 30 to $5000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ (guaranteed); 30 to $5000 \mathrm{~Hz} \pm 0.5 \mathrm{~dB}$ (typ.); valid over the entire delay range.
Distortion: $\quad$ Less than $2 \%(-34 \mathrm{~dB})$ THD (guaranteed);

Signal/Noise Ratio: Greater than 60 dB referenced to a 2 V p-p input signal.
Audio Gate Control: Dipswitch-selectable high-active or low-active gate control signal.
Power Required: $\quad$ Voltage: Minimum, +9.0 VDC; maximum, +12.0 VDC.
Current: Approx. 25 mA .

## Dimensions:

$2.1 \times 2.7$ inches; tallest component is 0.5 inches above the PC board. Four holes are provided for \#6-32 mounting hardware.

## P1 (I/O CONNECTOR)

The DADM uses P1 (a male, 0.1 "-spaced four-pin header connector) and a four-conductor ribbon cable to connect to the ICS Linker IIa, Linker III, Single M, S-COM 5K, 6K, and 7K Repeater Controllers. (The 5 K has a header connector for one DADM, while the 6 K and 7 K have two.) The ribbon cable has a socket connector on each end. P1's four pins are Audio Input (1), Audio Output (2), Ground (G), and Power (+).

Next to P1 is a solder hole for a fifth connection, used for the Audio Gate Control Line (5). This feature is useful in some custom installations.
(The first production run of DADMs had a solder hole for a sixth connection, used for an ACCoupled Audio Output (6). Pin 6 doesn't exist in later units. See the explanation in "P2 Jumper" below.)

If the silkscreen characters become unreadable, pin 1 can be identified by its square pad on the solder side of the board.

In the schematic, P1 is drawn with all six connections for reference purposes.

## P2 (OUTPUT COUPLING JUMPER)

A push-on jumper, P 2 , was added in an early revision to eliminate the need for a separate ACcoupled output connection (formerly, pin 6 of P1). With the jumper installed, the output blocking capacitor is shunted, and the output is DC coupled. (There is a DC component of $0.45 \times$ Vsupply present at the output.) This configuration is compatible with the ICS Linker IIa, Linker III, Single M, S-COM $5 \mathrm{~K}, 6 \mathrm{~K}$, and 7 K controllers. With the jumper removed, the output blocking capacitor is in series with the audio output, making the output AC coupled. AC coupling is compatible with other types of controllers.

## AUDIO GATE (SWITCHES 5 \& 6)

To use the on-board audio gate, connect your receiver's COR (Carrier-Operated Relay) or COS (Carrier-Operated Switch) output to pin 5 (near P1). Your COR signal must be under 1 VDC when low, and above 3 VDC when high. Using the table below, set dipswitches 5 and 6 to the correct positions for your particular COR sense (low-active or high-active). Note: If you are not using the audio gate, you must turn switch 5 ON and switch 6 OFF.

AUDIO GATE CONTROL TABLE

| COR Sense | Switch 5 | Switch 6 |
| :--- | :---: | :---: |
| No COR used (audio gate ON) | ON | OFF |
| High Active | ON | OFF |
| Low Active | OFF | ON |

## AUDIO DELAY (SWITCHES 1-4)

Using the table below, set dipswitches 1 through 4 to select the amount of delay desired. To eliminate DTMF bursts, try at least 50 mS as a starting point. Eliminating a squelch tail might require 75 to 150 mS .

## DELAY SELECT TABLE

| Approx. Delay | Switch 1 | Switch 2 | Switch 3 | Switch 4 |
| :--- | :---: | :---: | :---: | :---: |
| 12 milliseconds | ON | ON | ON | ON |
| 25 | ON | ON | ON | OFF |
| 37 | ON | ON | OFF | ON |
| 50 | ON | ON | OFF | OFF |
| 61 | ON | OFF | ON | ON |
| 74 | ON | OFF | ON | OFF |
| 86 | ON | OFF | OFF | ON |
| 98 | ON | OFF | OFF | OFF |
| 111 | OFF | ON | ON | ON |
| 123 | OFF | ON | ON | OFF |
| 135 | OFF | ON | OFF | ON |
| 147 | OFF | ON | OFF | OFF |
| 160 | OFF | OFF | ON | ON |
| 172 | OFF | OFF | ON | OFF |
| 184 | OFF | OFF | OFF | ON |
| 197 | OFF | OFF | OFF | OFF |

## CONTACT US

For assistance or to order additional units, please contact ICS at the address and phone number below, or visit us on the web at www.ics-ctrl.com.

## Integrated Control Systems

1613 Bonnie Av
Dixon, IL 61021
815-284-6963 Voice
815-288-0718 Fax
http://www.ics-ctrl.com



