GENERAL

This addendum documents a change to the RX Front End Module (19D902782G3, G4, \& G7) Maintenance Manual. Torque specification changed from 20 in-lbs. to 12.5 ± 2.50 in-lbs.

CHANGES

On page 6, update drawing 19D902782 with revision 10.

(19D902782, Rev. 10)

ADDENDUM NUMBER 1 TO MAINTENANCE MANUAL

COMPONENT	$\begin{aligned} & 450-470 \mathrm{MHZ} \\ & \mathrm{SPLIT}(\mathrm{G450}) \\ & \quad \Delta \end{aligned}$	$\begin{aligned} & 450-470 \mathrm{MHZ} \\ & \text { SPLIT (G455) } \\ & \quad \Delta \end{aligned}$	$\begin{aligned} & 425-450 \mathrm{MHZ} \\ & \mathrm{SPLIT}(\mathrm{G4} 25) \\ & \triangle \end{aligned}$
c2	12 pf	12 pf	12 pf
C4	8.2pf	8.2pf	100pf
C5	12 pf	12 pf	12 pf
C6	82pf	82pf	100pf
C7	12 pf	12 p	5.6pf
С8	22pf	22pf	120 pf
cs	10 pf	10 pf	12 pf
C10	6.8pf	6.8pf	15pf
C11	8.2pf	8.2pf	18pf
C12	10 pf	10 pf	15 pf
C13	10 pf	10 pf	10 pf
C14	3.9pf	3.9pf	3.3 pf
C15	6.8pf	6.8pf	220pf
C16	3.9pf	3.9 pf	3.3 pf
C17	4.7pf	4.7pf	220 pf
C18	3.9pf	3.9pf	3.3 pf
FL1	HELICAL FILTER	HELICAL FILTER	HELICAL FILTER
L1	helical coil	helical coil	helical coil
L2	helical coil	helical coil	helical coil
L3	HELICAL Coil	helical coil	helical coil
L4	helical coil	helical coil	helical coil
L5	helical coil	HELICAL COIL	helical coil
L6	15 nH	15 nH	15 nH
L8	33 nH	33 nH	33 nH
L9	22 nH	22 nH	15 nH
L11	12 nH	12 nH	22 nH
L13	27 nH	27 nH	39 nH
L14	18 nH	18 nH	10 nH
L15	33 nH	33 nH	10 nH
L16	22 nH	22 nH	12 nH
L17	22 nH	22 nH	12 nH
L18	10 nH	10 nH	15 nH
L19	12 nH	12 nH	15 nH
R5	10 OHMS	10 OHMS	$\bigcirc \mathrm{OHMS}$
R6	390 OHMS	390 OHMS	NOT USED
R14	18 OHMS	10 OHMS	27 OHMS
R35	0 OHMS	0 OHMS	27 OHMS
R36	NOT USED	NOT USED	NOT USED

ADDENDUM NUMBER 1 TO MAINTENANCE MANUAL

GENERAL

This addendum adds a production change to Receiver Front End Module Maintenance Manual 19D902782G3, G4, and G7.

On page 4, add the following to the list of production changes:
REV. C - RECEIVER FRONT END BOARD 19D902490G4
To improve pass rate during conversion loss test and to replace obsolete part, inductor L19 was changed from 15 mH inductor (19A705470P3) to a 12 mH (19A705470P2) inductor.

Replace schematics 19D904768, Sh. 1, Rev. 7 on page 8 and 9 of the manual with revision 8 (see page 1 and 2).
tyco Electronics MACCM

M/A-COM Wireless Systems
221 Jefferson Ridge Parkway
(Outside USA, 434-385-2400) Toll Free 800-528-7711
www.macom-wireless.com

RECEIVER FRONT END MODULE
19D902782G3, G4, \& G7

TABLE OF CONTENTS	
	Page
DESCRIPTION	Front Cover
SPECIFICATIONS	1
CIRCUIT ANALYSIS	
PRESELECTOR FILTER	1
PREAMPLIFIER	1
IMAGE REJECTION FILTER	1
INJECTION AMPLIFIER	1
INJECTION FILTER	1
DOUBLE BALANCE MIXER	1
FAULT DETECTOR	1
MAINTENANCE	
TEST PROCEDURE	2
ALIGNMENT PROCEDURE	2
TROUBLESHOOTING GUIDE	2
BLOCK DIAGRAM	. 1
PARTS LIST	3
PRODUCTION CHANGES	4
OUTLINE DIAGRAM	4
ASSEMBLY DIAGRAM	6
SCHEMATIC DIAGRAM	. 8

DESCRIPTION

The Receiver Front End (RXFE) Module amplifies and converts the RF signal to the first IF signal of 21.4 MHz. This is a down conversion process using low side is powered by a regulated 12 volts. The RXFE printed wiring board contains the following functional circuits:

- Preselector Filter
- Preamplifier

tyco

Electronics

- Image Rejection Filter
- Injection Amplifier
- Injection Filter
- Double Balanced Mixer
- Fault Detector

All but the Fault Detector circuit in the RXFE mod ule have 50 ohm impedance terminations.

Table 1-General Specifications	
ITEM	SPECIFICATION
FREQUENCY RANGE	$\begin{aligned} & 450.0 \mathrm{MHz}-470.0 \mathrm{MHz} \text { (G3, G4) } \\ & 425.0 \mathrm{MHz}-450.0 \mathrm{MHz} \text { (G7) } \end{aligned}$
IF FREQUENCY	21.4 MHz
3 dB BANDWIDTH	>3 MHz
IMPEDANCE	50 ohms at RF, LO, and IF Ports
CONVERSION LOSS	$-2 \mathrm{~dB} \pm 1 \mathrm{~dB}$
NOISE FIGURE (NF)	$<7.5 \mathrm{~dB}$
THIRD ORDER INTERCEPT POINT	$\begin{aligned} & >+20 \mathrm{dBm}(\mathrm{G} 3, \mathrm{G} 4) \\ & >+15 \mathrm{dBm}(\mathrm{G} 7) \end{aligned}$
IMAGE REJECTION	$>100 \mathrm{~dB}$
INJECTION POWER	$+2 \mathrm{dBm} \pm 2 \mathrm{~dB}$
TEMPERATURE RANGE	$-30^{\circ} \mathrm{C} \mathrm{TO}+60^{\circ} \mathrm{C}$
SUPPLY VOLTAGE	12.0 Vdc
SUPPLY CURRENT	$290 \mathrm{~mA} \pm 20 \mathrm{~mA}$ typical $230 \mathrm{~mA} \pm 20 \mathrm{~mA}$ typical (G3)

CIRCUIT ANALYSIS

PRESELECTOR FILTER

The received RF signal (J2) is routed through the Preseector Filter. This filter provides front end selectivity and attenuates the potential spurious signals of first conversion. Typically, the filter has an insertion loss of 3 dB and an five-pole helical bandpass filter (L1 thru L5) and is tunable in the band split ($450.0-470.0 \mathrm{MHz}$ or $425.0-450.0 \mathrm{MHz}$) range.

PREAMPLIFIER

The output from the Preselector is coupled through a mpedance matching network consisting of L6, C2, and DC broadband common emitter amplifier. The Preamplifier stage is supplied by the regulated +12 Vdc line (VCC1) and draw about 70 mA through R4. It has a low noise figure and high Third Order Intercept point. Transistor Q2 provides Q1 with constant voltage and current source. The bias on Q1 is moni

Ted by the Fault Detector circuit via R17. Capacitors C20 an C21 prevent the RF component from entering the fault circuit The output signal is coupled to the Image Rejection Filter vi impedance matching network consisting of $\mathrm{C} 4, \mathrm{~L} 8$, and esistors R5 and R6.

IMAGE REJECTION FILTER

Following the Preamplifier is the Image Rejection Filter The Image Rejection Filter is a fixed tuned helical bandpas filter and can meet the desired image rejection of the frequency band.

INJECTION AMPLIFIER

The local oscillator input (J3) from the Receiver Synthe sizer is coupled through an impedance matching network (C5 and L9) to the base of the Injection Amplifier Q3. Q3 and Q8 are common emitter amplifiers. The output from Q3 is coupled the base of Q8. The Injection Amplifier, consisting of Q3 $\mathrm{Q8}$ and associated circuitry is capable of amplifying the injection signal from 0 dBm to +25 dBm in the 428 to 449 MHz range

Figure 1 - Block Diagram
or to +18 dBm in the $446-472 \mathrm{MHz}$ range. The amplifier is owered by the regulated +12 Vdc line (VCC1). Transistor Q4 and Q7 provide Q3 and Q8 with a constant voltage and urrent source. The bias on Q3 and Q8 is monitored by the ors C22, C23 and C26 prevent the RF component from entering the fault circuit. The output signal is coupled to the Injection Filter via an impedance matching network consisting of C8, L13, and resistors R15 and R16

INJECTION FILTER

Following the Injection Amplifier is the Injection Filter consisting of C9 through C19, L14 through L20, and R30. Configured as a bandpass filter, the Injection Filter has G7) and is used to attenuate the harmonics of the Injection Amplifier. The filter also has an insertion loss of about 2 dB .

DOUBLE BALANCE MIXER

The Double Balance Mixer (DBM) is a broadband The Double Balance Mixer (DBM) is a broadband
mixer It converts an RF signal to the 21.4 MHz first conver-
sion IF frequency. The mixer uses low side (G3, G4) or high side (G7) injection driven by a local oscillator signal of +20 (G3, G4) or +15 (G7) dBm. The mixer conversion loss is typically about 6.5 dB . The IF output signal is then route o the output connector (J4)

FAULT DETECTOR

The Fault Detector circuit monitors the operation of preamplifier and injection amplifier devices. Operationa amplifiers U1.1 and U1.2 compare the bias on the Preamplifier Q1 to preset levels, while U1.3 and U1.4 compare the bias levels on Injection Amplifiers Q3 and Q8

When the bias for $\mathrm{Q} 1, \mathrm{Q} 3$, and Q 8 is within the preset window limits, the output from the comparators is a high level. This causes Q5 to conduct, turning off Q6 and the fault indicator, CR2. A high level signal is also sent to the Controller on the FLAG 0 line.

If the biasing for the amplifiers is not within the proper operating range, the fault detector circuit will pull the FLAG
0 line low. This turns off Q causing Q6 to conduct Q6 now 0 line low. This turns off Q5 causing Q6 to conduct. Q6 now
provides a ground path for CR2, turning on the fault indicaprovi

MAINTENANCE

TEST PROCEDURE

The RXFE module has to be tested for Noise Figure, Gain, Third Order Intercept Point, Isolation etc. With proper current drawing of devices, Bandwidth and Conversion Gain the RXFE module will meet its specifications. The following test procedures will verify proper Conversion Gain and current drain:

1. Supply 12 Vdc to pin $15 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$. (1 C is ground.)
2. Inject the desired RF signal into RF IN at a level of -10 dBm .
3. Inject the desired local oscillator signal into LO IN at a level of $0 \mathrm{dBm}[\mathrm{LO}$ frequency $=\mathrm{RF}$ frequency at a level of 0 dBm [LO frequency $=\mathrm{RF}$
4. Measure the IF OUT power at 21.4 MHz , the ratio of RF IN to IF OUT is $-2 \mathrm{~dB} \pm 1 \mathrm{~dB}$.
5. Measure the current drawn by the RXFE module. Typical current drain is 290 mA .

ALIGNMENT PROCEDURE

Alignment for the Receiver Front End module consists Alignme five-pole Preselector Filter only Normally the RXFE should only need the fine-tuning procedures. For a major receiver frequency change, the RXFE needs to be adjusted using the major-retuning procedures.

For Fine-Tuning

1. Supply 12 Vdc to pin $15 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$. (1 C is ground.)
2. Inject the desired RF signal into RF IN (J2) at a level of -10 dBm .
3. Inject the desired local oscillator signal into LO IN (J3) at a level of $0 \mathrm{dBm}[\mathrm{LO}$ frequency $=\mathrm{RF}$ frequency -21.4 MHz (G3, G4) +21.4 MHz (G7)].
4. Detect IF signal at 21.4 MHz . Slightly adjust L 1 to 5 to get maximum power (don't adjust more than
en degrees). If an RF Voltmeter is used, connect a Low Pass Filter (LPF) to the IF OUT (J4) to attenuate high frequency components. The corner of the LPF
should be set for 40 MHz . should be set for 40 MHz .
5. Repeat Test Procedure steps to verify conversion gain and current drain.

For Major-Retuning

The best way to do a major retuning of the RXFE is with
 swept frequency tuning. The swept frequency tuning can be
done using a Spectrum Analyzer and Tracking Generator. With proper Injection power and current drain, the frequency response of the Preselector Filter can be seen by viewing the RF to IF port feedthrough on the spectrum analyzer. This feedthrough is typically 35 dB down from the input level at the RF port. Use the following procedure for swept frequency tuning:

1. Supply 12 Vdc to pin $15 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$. (1 C is ground.)
2. Inject the Tracking generator output at 0 dBm into the RF IN connector, (J2).
3. Inject local oscillator power at 0 dBm into the LO IN connector, (J3) [LO frequency $=$ RF frequency -21.4 $\mathrm{MHz}(\mathrm{G} 3, \mathrm{G} 4)+21.4 \mathrm{MHz}(\mathrm{G} 7)]$.
4. Preset the height of slugs with respect to the top of five-pole cavity as follows (Table 2):

Table 2

Frequency (MHz)	HEIGHT (in inches)					
	L1	L2	L3	L4	L5	
450	$15 / 64$	$16 / 64$	$17 / 64$	$17 / 64$	$16 / 64$	
454	$16 / 64$	$17 / 64$	$17 / 64$	$18 / 64$	$15 / 64$	
458	$16 / 64$	$19 / 64$	$19 / 64$	$19 / 64$	$17 / 64$	
462	$18 / 64$	$19 / 64$	$20 / 64$	$20 / 64$	$18 / 64$	
466	$21 / 64$	$22 / 64$	$23 / 64$	$21 / 64$	$20 / 64$	
470	$22 / 64$	$24 / 64$	$24 / 64$	$23 / 64$	$22 / 64$	

5. Center the spectrum analyzer at the desired frequency and set the reference at about -30 dBm . Adjust L1 to L5 for best possible response.

TROUBLESHOOTING GUIDE

SYMPTOM	AREAS TO CHECK	READING (TYP.)
LOW CONVERSION GAIN	Check Vcc	12 V
	Preselector Loss	3.5 dB
	Preamplifier Gain	11 dB
	Image Rej. Filter Loss	2 dB
	1st Mixer Conversion Loss	6.5 dB
	1 L.O. Level (@ mixer L.O. port)	$\begin{aligned} & +22 \pm 2 \mathrm{dBm}(\mathrm{G} 3, \mathrm{G} 4) \\ & +14 \pm 2 \mathrm{dBm}(\mathrm{G} 7) \end{aligned}$
LED INDICATOR ON	Check Vc of Q1	10 V
	Check Vc of Q3 and Q8	10 V
IF FREQUENCY OFF	Check L.O. FREQUENCY	$\begin{aligned} \text { L.O. frequency }=\text { RF frequency } & -21.4 \mathrm{MHz}(\mathrm{G} 3, \mathrm{G} 4) \\ & +21.4 \mathrm{MHz}(\mathrm{G} 7) \end{aligned}$
LOW L.O. POWER*	Injection Amplifier Gain	$\begin{aligned} & 23 \pm 2 \mathrm{~dB}(\mathrm{G} 3, \mathrm{G} 4) \\ & 18 \pm 2 \mathrm{~dB}(\mathrm{G} 7) \end{aligned}$
	Injection Filter Loss	2 dB

* NOTE: For troubleshooting the gain or loss, the RXFE needs to be under the normal operating condition:
- 12 Vdc supply
- Inject L.O. power at a level of 0 dBm into LO IN (J3), [LO freq. $=$ RF freq. $-21.4 \mathrm{MHz}(\mathrm{G} 3, \mathrm{G} 4$ +21.4 MHz (G7)
- Inject the desired RF signal at a level of - 10 dBm into RF IN (J2)
- Terminate the IF OUT (J4) with a good 50 ohm impedance.
- Use a Spectrum Analyzer and 50 ohm probe (with good RF grounding) to probe at the input and output of each stage to check its gain or loss (see schematic diagram).

RECEIVER FRONT END MODULE 19D902782G3 (450-470 MHz) 19D902782G4 (450-470 MHz ETSI) 19D902782G7 ($425-450 \mathrm{MHz}$) ISSUE 5			SYMBOL	PART NUMBER	DESCRIPTION	SYMBOL	PART NUMBER	DESCRIPTION	SYMBOL	PART NUMBER	DESCRIPTION
			$\begin{aligned} & \mathrm{C} 13 \\ & \mathrm{C} 14 \end{aligned}$	19A702061P13 19A702061P8	Ceramic: $10 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM. Ceramic: $3.9 \mathrm{pF} \pm 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 120 PPM. (Used in G3, G4).	$\begin{aligned} & \mathrm{J} 1 \\ & \mathrm{~J} 2 \\ & \text { thru } \\ & \mathrm{J4} \end{aligned}$	19B801587P7 19A115938P24	\qquad Jacks \qquad Connector, DIN: 96 male contacts, right angle mounting; sim to AMP 650887-1. Connector, receptacle.	L21	19A705470P16	Coil, Fixed: $0.18 \mu \mathrm{H}$; sim to Toko 380NB-R18M.
									194700021P105	Coil RF ceramic. 22 nH (Used in G4).	
									19A705470P6	Coil, fixed: 27 nH ; sim to Toko 380NB-27nM. (Used in G7).	
SYMBOL	PART NUMBER	DESCRIPTION									
			C14	19A702061P7	Ceramic: $3.3 \mathrm{pF}, 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 120 PPM. (Used in G7).			\square	L23	9A700021P13	Coil, RF ceramic: 470 nH . (Used in G4),
4	19D902555P1	Handle.	C15	19 A 7020		$\begin{aligned} & \text { thru } \\ & \mathrm{J} \end{aligned}$	19A115938P24		L23	19A705470P21	Coil, fixed: 0.47 uH ; sim to Toko
5		Cove			Ceramic: $6.8 \mathrm{pF} \pm 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 60 PPM. (Used in G3, G4).	L1	19C850817P10RF	Coil: sim to Paul Smith SK853-1. (Used in G3, G4). Coil. (Used in G7). RF Coil: sim to Paul Smith SK853-1, (Used in $\mathrm{G} 3, \mathrm{G} 4$).	+24	19A700000P122	
6	02381P	Screw, thread forming: TORX, No. М3.5-6 6 .	C15	19A702061P69	Ceramic: $220 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM. (Used in G7).		19C850817P25				Coil, fixed: $8.2 \mathrm{uH} \pm 10 \%$; sim to Jeffers 22-8.2-10.
7	19A702381P513	Screw, thread forming: TORX, No.		19A702061P8		L1					
		M3.5-0.6 13.	C16		$\begin{aligned} & \text { Ceramic: } 3.9 \mathrm{pF} \pm 0.5 \mathrm{pF}, 50 \mathrm{VDCW} \text {, } \\ & \text { temp coef } 0 \pm 120 \text { PPM. } \\ & \text { (Used in G3, G4). } \end{aligned}$	$\begin{gathered} \mathrm{L}, \\ \text { thru } \\ \mathrm{L} 4 \end{gathered}$	${ }^{19 C 850817 P 9}$		Q1	344A3058P1 19A700059P2	---- TRANSISTORS ----Silicon, NPN.
11	19A702381P508	Screw, thd. form: No. $3.5-\mathrm{-} .6 \times 8$.									
		RECEIVER FRONT END BOARD 19D902490G3 (450-470 MHz)	C16	19A702061P7	Ceramic: $3.3 \mathrm{pF}, 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 120 PPM. (Used in G7).	$\begin{gathered} \mathrm{L} 2 \\ \text { thru } \\ \mathrm{L} 4 \end{gathered}$	19C850817P5	Coil. (Used in G7).	Q2	19A700059P2	Silicon, PNP: sim to MMBT3906, low profile.
		199902490G4 (450-470 MHz ETSI) 19D902490G7 (425-450 MHz)	C17	19A702061P	Ceramic: $4.7 \mathrm{pF} \pm 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 60 PPM. (Used in G3, G4).			RF Coil: sim to Paul Smith SK853-1. (Used in G3, G4).	Q3	19A704708P3	Silicon, PNP: sim to MMBT3906, lowprofile.
		19D902490G7 (425-450 MHz)				L5	$19 \mathrm{C850817P10}$		Q4	19A700059P2	
			C17	19A702061P69	Ceramic: $220 \mathrm{pF}, \pm 5 \%$, 50 VDCW , temp coef 0+30 PPM. (Used in G7),	L5	${ }^{19 C 850817 P 25}$	Coil. (Used in G7). Coil, Fixed: 15 nH ; sim to Toko	$\begin{aligned} & \text { Q5 } \\ & \text { and } \\ & \text { 06 } \end{aligned}$	19A700076	Silicon, NPN: sim to MMBT3904, low profile. (Used in G3).
			C18	19A702061P8	Ceramic: $3.9 \mathrm{pF} \pm 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 120 PPM. (Used in G3, G4).	L6L7	${ }^{19 A 705470 P 3} 19$				
c2	${ }^{19 A 9702052 P 14}$	Ceramic: $0.01 \mu \mathrm{~F} \pm 10 \%$, 50 VDCW .						380NB-15nM. Coil, Fixed: $0.18 \mu \mathrm{H}$; sim to Toko 380NB-R18M	Q7	19A700059P2 344A3058P1	Silicon, PNP: sim to MMBT3906, low profile. Silicon, NPN.
C2	19A702061P17	Ceramic: $12 \mathrm{pF} \pm 5 \%$, 50 VDCW , temp coef 0 ± 30 PPM.	C18	1P7	Ceramic: $3.3 \mathrm{pF}, 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM. (Used in G7).	L8	19A705470P7		Q8		
С3	19A702052P14	Ceramic: 0.01 HF $\pm 10 \%$, 50 VDCW .	C19	19A702061P45				Coil, fixed: $33 \mathrm{nH} \pm 20 \%$; sim to Toko			
c4	19A702061P12	Ceramic: $8.2 \mathrm{pF} \pm 0.5 \mathrm{pF}$, 50 VDCW, temp coef $0+60$ PPM. (Used in G3, G4)			Ceramic: $47 \mathrm{pF} \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM.	L9	19A705470P5	Coil, Fixed: 22 nH ; sim to Toko $380 \mathrm{NB}-22 \mathrm{nM}$. (Used in G3, G4).	R1		---- RESISTORS -----
C4	19A702061P61	Ceramic: $100 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef $0 \pm 30 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$. (Used in G7).	$\begin{gathered} \mathrm{C} 20 \\ \text { thru } \\ \text { car } \end{gathered}$	9A702052P14	Ceramic: $0.01 \mu \mathrm{~F} \pm 10 \%$, 50 VDCW .	L9	19A705470P3	Coil, fixed: 15 nH ; sim to Toko 380NB-15nM. (Used in G7).	R3	198800607P102 19B800607P331	Metal film: 1 K ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. Metal film: 330 ohms $\pm 5 \%, 1 / 8 \mathrm{w}$.
c5	19A702061P17	Ceramic: $12 \mathrm{pF} \pm 5 \%$, 50 VDCW, temp coef 0 ± 30 PPM.	$\begin{aligned} & \text { C29 } \\ & \text { and } \\ & \text { c30 } \end{aligned}$	19A702061P89	Ceramic: $1500 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 120 PPM (Used in G4 \& G7).	L10	194705470 P16	Coil, Fixed: $0.18 \mu \mathrm{H}$; sim to Toko 380NB-R18M.	R4 R5		Metal film: 27 ohms $\pm 5 \%$, $1 / 8 \mathrm{w}$. Metal film: 10 ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. (Used in G3, G4).
c6	19A702061P57	Ceramic: $82 \mathrm{pF} \pm 5 \%$, 50 VDCW, temp coef 0 ± 30 PPM. (Used in G3, G4).		205P		L11	19A705470P3 19A705470P5	Coil, Fixed: 15 nH ; sim to Toko 380NB-15nM. (Used in G3, G4). Coil, fixed: 22 nH: sim to Toko 380NB-22nM. (Used in G7).	R5		
C6	19A702061P63	Ceramic: 120 pf, 5%, 50vDCw,	+ ${ }_{\text {c29 }}^{\text {and }}$	19A705205P26	$\begin{aligned} & \text { Tantalum: } 3.3 \mathrm{~F} \pm 20 \%, 16 \mathrm{VDCW}, \\ & \text { (Used in G3). } \end{aligned}$	L11			R5	19B800607P1 198800607P391	Metal film: 0 ohms. (Used in G7). Metal film: 390 ohms $\pm 5 \%, 1 / 8 \mathrm{w}$.
		temp coef $0 \pm 30 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$. (Used in G7).	${ }^{*} \mathrm{COn} 1$	199705205P 1		L12			R6		
c7	19A702061P17	Ceramic: $12 \mathrm{pF} \pm 5 \%$, 50 VDCW , temp coef 0 ± 30 PPM. (Used in G3, G4).			Tantalum: $33 \mu \mathrm{~F}+20 \%$, 16 VDCW , (Used in G3).		19A705470P16	Coil, Fixed: $0.18 \mu \mathrm{H}$; sim to Toko 380NB-R18M 380NB-R18M.		198800607P183	Metal film: 18 K ohms $\pm 5 \%$, $1 / 8 \mathrm{w}$. Metal film: 6.8 K ohms $\pm 5 \%$, $1 / 8 \mathrm{w}$.
c7	19A702061P10	Ceramic: $5.6 \mathrm{pF}, 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$ temp coet $0+60$ PPM ${ }^{\circ} \mathrm{C}$. (Used in $\mathrm{G7}$).	C31thruC33c3	19A702236P40	Ceramic: $39 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM. (Used in G4 \& G7).	13	19A705470P6 19A705470P8	Coil, Fixed: 27 nH ; sim to Toko 380NB-27nM. (Used in G3, G4). Coii, fixed: 39 nH ; sim to Toko 380NB-35nM. (Used in G7).	R8	19B800607P682 19B800607P182	
C8	19A702061P29			19A702061P37		L13			${ }_{\text {R10 }}$	${ }^{\text {19888800067P } 182}$	Metal film: 6.8 K ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. Metal film: 1.8 K ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. Metal film: 47 ohms $\pm 5 \%, 1 / 8 \mathrm{w}$.
		coef 0 ± 30 PPM. (Used in $\mathrm{G3}, \mathrm{G4}$).	$\begin{aligned} & \text { C34 } \\ & \text { thru } \\ & \text { C36 } \end{aligned}$		Ceramic: $33 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM. (Used in G4 \& G7).	L14	19A705470P4	Coil, Fixed: 18 nH ; sim to Toko 380NB-18nM. (Used in G3, G4)		198800607P221	Metal film: 220 ohms $\pm 5 \%$, 1/8w. (Used in G4).
c8	19A702061P63	Ceramic: $120 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM. (Used in G7).							R10		
c9	19A702061P13	Ceramic: $10 \mathrm{pF} \pm 5 \%$, 50 VDCW , temp	$\begin{gathered} * \text { K37 } \\ \text { and } \\ \end{gathered}$	19A705205P26	Tantalum: $3.3 \mu \mathrm{~F}+20 \%$, 16 VDCW ,(Used in G4. G7) (Used in G4, G7).			Coil, fixed: $33 \mathrm{nH} \pm 20 \%$; sim to Toko 380NB-33nM. (Used in G3, G4). Coil, fixed: 10 nH ; sim to Toko	R11	198800607P331	Metal film: 330 ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. Metal film: 5.6 K ohms $\pm 5 \%, 1 / 8 \mathrm{w}$.
		coef 0 ± 30 PPM. (Used in G3, G4).				and	19A705470P1		R12R13		
c9	19A702061P17	Ceramic: $12 \mathrm{pF}, \pm 5 \%, 50 \mathrm{VDCW}$, temp coef 0 ± 30 PPM. (Used in G7).	$\begin{aligned} & \text { Co38 } \\ & \text { Cond } \\ & \text { and } \\ & \text { Co40 } \end{aligned}$	19A705205P 15	Tantalum: $33 \mu \mathrm{~F} \pm 20 \%$, 16 VDCW , (Used in G4, G7).			Coil, fixed: 10 nH ; sim to Toko 380NB-10nM. (Used in G7). Coil, Fixed: 22 nH ; sim to Toko 380NB-22nM. (Used in G3, G4)		198800607P562 19B800607P122 19B800607P180	Metal film: 1.2 K ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. Metal film: 18 ohms $\pm 5 \%$, $1 / 8 \mathrm{w}$.
C10	19A702061P11	Ceramic: $6.8 \mathrm{pF} \pm 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 60 PPM. (Used in G3, G4),				$\begin{gathered} \mathrm{L} 16 \\ \text { and } \end{gathered}$	19A705470P5		R14		
C10	19A702061P21		CR1CR2	344A3062P119A703595P10	Diode, Schotty (part of 19D902782G3). Diode, Optoelectric: Red; sim to HP HLMP-1301-010. (Used in G3).	$\begin{aligned} & 1017 \\ & 17 \\ & 16 \end{aligned}$	19A705470P2		R14	198800607P27	Metal film: 27 ohms $\pm 5 \%$, 118 w . (Used in $G 7$).
		temp coef 0 ± 30 PPM. (Used in $\mathrm{G7}$).				and and		380NB-12 nM. ((sed in G7).	R1	19B800607P27	Metal film: 27 ohms $\pm 5 \%$, 118 w .
C11	19A702061P12	Ceramic: $8.2 \mathrm{pF} \pm 0.5 \mathrm{pF}, 50 \mathrm{VDCW}$, temp coef 0 ± 60 PPM. (Used in G3, G4).				L17	19A705470				
C11	19A702061P25	Ceramic: $18 \mathrm{pFF}, 55 \%$, 50 VDCW ,								19B800607P	Metal film: 10 ohms $\pm 5 \%$, $1 / 8 \mathrm{w}$. (Used in G4).
	19A702061P13	temp coet 0 030 PPM. (Used in G7). Ceramic: 10 PF 55%, 50 VDCW , tem	FL1	9A705458P1	Helical, UHF: $450-470 \mathrm{MHz}$.	L18	19A	Coil fixed 15 nH ; sim to Toko 380NB-15nM. (Used in G7).	R16	198800607P18	Metal film: 180 ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. (Used in G3 \& G7)
cin ${ }_{\text {and }}^{\text {C13 }}$	19A70206t ${ }^{\text {a }}$	coef 0 ± 30 PPM. (Used in G3, G4).	FL1	19A705458P5	(Used in G3, G4). Helical, UHF: $425-450 \mathrm{MHz}$.	L19	19A705470P3	Coil, fixed: 15 nH ; sim to Toko 380NB-15nM.	R16	19B800607P391	Metal film: 390 ohms $\pm 5 \%, 1 / 8 \mathrm{w}$. (Used in G4).
C 12	19A702061P21	Ceramic: 15 pF, 55%, 50 VDCW ,			(Used in G7).	L20	19A705470P24	Coil, Fixed: $0.82 \mu \mathrm{H}$; sim to Toko 380NB-R82M.	R17	19B800607P103	Metal film: 10 K ohms $\pm 5 \%$, 1/8 w.

production changes
Changes in the equipment to improve or to simplify circuits are
identified by a "Revision Letter", which is stamped after the model number of the unit. The revision stamped on the unit includes all number of the unit. The revision stamped on the unit includes all
previous revisions. Refer to the Parts List for descriptions of parts
affected by these revisions.
REV. A - RECEIER FRONT END BOARD 19D902490G3 REV. B-RECEIVER FRONT END BOARD 19D902490G3 REV. A - RECEIVER FRONT END BOARD 19D902490G4 To correct overheating problem.
R14 was 10 ohms (198800607P100).
REV. C-RECEIVER FRONT END BOARD 19D902490G3 switching power supply frequency.
Added C29, C30, C31, C32 and L24.

PRODUCTION CHANGES - CONT REV. B -RECEIVER FRONT END BOARD 19D902490G4 REV. A - RECEEVER FRONT END BOARD 19D902499G7 switching power supply frequency.
Added C37, C38, C39, C40 and L24.
REV. B-RECEIVER FRONT END BOARD 19D902490G7 To improve receiver sensitivity L8 changed from
 55 changed from 10 ohms (198800607P100) R14 changed from 18 ohms (19B800607P180) to 27 onts (19B800607P270); (19B800607P391)
R6 (198800607P391) and R36 (were deleted.
REV. D-RECEIVER FRONT END BOARD 19D902490G3 Reduce excessive LO drive level. Changed R15 from
10 ohms (198800607P100) to 27 ohms (198800607P270). Changed R16 from 390 ohms (1988800607P391) to Changed R16 from 390 ohms
180 ohms (19B800607P181).
Rev. 1A - Receiver Front End Module 19D902782G4 \& G7 To reduce RF emissions, the conductive connector grommet
was replaced with a thicker part to ensure contact with the was replace w wh a thicker part to ensure contact with the
front panel at R R connectors. RF Shielding Grommet was
thanged fro 1 . changed from 198802690P1 to 19D802690P2.

U1 19A704125P1
nal Amplifier

\bigcirc

O

$$
\mathrm{ClO}_{\mathrm{C}_{0}}^{\mathrm{L14}} \square_{\square}^{\mathrm{D}}
$$

RECEIVER FRONT END BOARD 19D902490G3

ETSI UPGRADEABLE ($450-470 \mathrm{MHz}$ ETSI (425-450 MHz)

PL ISSUED

RECEIVER FRONT END BOARD
19D902490G4 \& G7

RECEIVER FRONT END MODULE
19D902782G3
(19D902782 Sh. 1 Rev. 6)

COAT THREADS OF TUNING SCREWS ITEM 20.

TIGHTEN TUNING NUTS, ITEM 21 SO THAT TORQUE ON TUNING SCREWS, ITEM 20 ARE 100 IN . OZ. AT MIDDLE OF TUNING RANGE WITH POINTS ON TUNING NUTS BETWEEN RAISED SERRATIONS ON CASTINGS ITEM 19.

RECEIVER FRONT END MODULE
19D902782G4 \& G7
(19D904768 Sh. 1 Rev.7)

COMPONENT	$\begin{gathered} 450-470 \mathrm{MHZ} \\ \text { SPLIT }(\mathrm{G} 450) \\ \Delta \end{gathered}$	$\begin{gathered} 450-470 \mathrm{MHZ} \\ \text { SPLIT }(\mathrm{G4} 45) \\ \Delta \end{gathered}$	$\begin{gathered} 425-450 \mathrm{MHZ} \\ \text { SPLIT }(\mathrm{G} 425) \\ \Delta \end{gathered}$
C2	12pf	12pf	12 pf
C4	8.2pf	8.2pf	100pf
C5	$12 p f$	12 pf	12 pf
C6	82pf	$82 p f$	100pf
C7	12 pf	12pf	5.6pf
C8	22pf	22pf	120pf
Cs	10 pf	10 pf	12 pf
C10	6.8pf	$6.8 p f$	15pf
C11	8.2pf	8.2pf	18pf
C12	10 pf	10pf	15pf
C13	10 pf	10pf	10pf
C14	3.9pf	3.9pf	3.3pf
C15	6.8pf	6.8 pf	$220 p f$
C16	3.9pf	3.9pf	3.3 pf
C17	4.7pf	4.7pf	$220 p f$
C18	3.9pf	3.9pf	3.3pf
FL1	HELICAL FILTER	HELICAL FILTER	HELICAL FILTER
L1	HELICAL COIL	HELICAL COIL	HELICAL COIL
L2	HELICAL COIL	HELICAL COIL	HELICAL COIL

COMPONENT	$450-470 \mathrm{MHZ}$ SPLIT (G450) Δ	$450-470 \mathrm{MHZ}$ SPLIT (G455) Δ	$425-450 \mathrm{MHZ}$ SPLIT (G425) Δ
L3	HELICAL COIL	HELICAL COIL	HELICAL COIL
L4	HELICAL COIL	HELICAL COIL	HELICAL COIL
L5	HELICAL COIL	HELICAL COIL	HELICAL COIL
L6	$15 n H$	$15 n H$	$15 n H$
L8	$33 n H$	$33 n H$	$33 n H$
L9	$22 n H$	$22 n H$	$15 n H$
L11	$12 n H$	$12 n H$	$22 n H$
L13	$27 n H$	$27 n H$	$39 n H$
L14	$18 n H$	$18 n H$	$10 n H$
L15	$33 n H$	$33 n H$	$10 n H$
L16	$22 n H$	$22 n H$	$12 n H$
L17	$22 n H$	$22 n H$	$12 n H$
L18	$10 n H$	$10 n H$	$15 n H$
L19	$15 n H$	$15 n H$	$15 n H$
R5	10 OHMS	10 OHMS	0 OHMS
R6	390 OHMS	390 OHMS	NOT USED
R14	18 OHMS	10 OHMS	27 OHMS
R35	0 OHMS	0 OHMS	27 OHMS
R36	NOT USED	NOT USED	NOT USED

RECEIVER FRONT END MODULE

This page intentionally left blank

