

FE3H040 ENHANCED PRESELECTOR INSTRUCTION MANUAL

FE3H 29-50 MHZ

Covers Models:

A10-FE3H035 A10-FE3H045

© 2004–2010 Daniels Electronics Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of Daniels Electronics Ltd.

The stylized "Daniels Electronics Ltd." and "DE" logo are registered Canadian and US trademarks of Daniels Electronics Ltd.

The stylized "Daniels Electronics Ltd." and "DE" logo are trademarks of Daniels Electronics Ltd.

Document Number: Revision: Revision Date: IM10-FE3H040 1-0-2 Nov 2010 Daniels Electronics Ltd. Victoria, BC PRINTED IN CANADA

DOCUMENT CONTROL	This document has been produced, verified and controlled in accordance with Daniels Electronics' Quality Management System requirements. Please report any errors or problems to Daniels Electronics' Customer Service Department.
DOCUMENT REVISION DEFINITION	Daniels Electronics Ltd. utilizes a three-level revision system. This system enables Daniels to identify the significance of a revision. Each element of the revision number signifies the scope of change as described in the diagram below.
	Major Revisions: The result of a major change to product function, process or requirements. Minor Revisions: The result of a minor change to product, process or requirements. Editorial Revisions: The result of typing corrections or changes in formatting, grammar or wording. Three-level revision numbers start at 1-0-0 for the first release. The appropriate element of the revision number is incremented by 1 for each subsequent revision, causing any digits to the right to be reset to 0. For example: If the current revision = 2-1-1 Then the next major revision = 3-0-0 If the current revision = 3-2-2 Then the next editorial revision = 3-2-3 The complete revision history is provided at the back of the document.
NOTE	The user's authority to operate this equipment could be revoked through
NOTE	The design of this equipment is subject to change due to continuous development. This equipment may incorporate minor changes in detail from the information contained in this manual.

Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Contents

General Information	1
Theory of Operation	3 3 4 4 4 4
Enhanced Preselector Alignment	5 5 6 7 7
Illustrations and Schematics 10 Enhanced Preselector Block Diagram 10 Enhanced Preselector Tuning Diagram 10 Bandpass Filter Component Layout 17 Bandpass Filter Schematic Diagram 17 Enhanced Preselector Component Layout 17 Enhanced Preselector Schematic Diagram 17 Enhanced Preselector Schematic Diagram 17 Enhanced Preselector Schematic Diagram 17	0 0 1 2
Parts List 18 Enhanced Preselector Board Electrical Parts 18 Bandpass Filter Board Electrical Parts 17 Mechanical Parts 18	5 7
Revision History	9

GENERAL INFORMATION

INTRODUCTION

The FE3H040 Enhanced Preselector is a highly integrated, frequency selective, down converter used in Daniels Electronics standard MT-3 Low Band VHF FM Receiver product line.

The Enhanced Preselector connects to the 21.4 MHz IF / Audio Mainboard and the Enhanced Synthesizer to form a complete receiver.

PERFORMANCE SPECIFICATIONS

Frequency Range:	29.0 MHz – 38.5 MHz (FE3H035) 37.5 MHz – 50.0 MHz (FE3H045)
IF Frequency:	21.4 MHz
3 dB Bandwidth:	> 5 MHz (Preselector Filter)
Conversion Gain:	12.5 dB
Third Order Intercept Point:	> +18 dBm
Image Rejection:	> 100 dB
Impedance:	50 Ω at RF, LO and IF ports
Temperature Range:	-30°C to +60°C (optional -40°C to +60°C)
Power Requirements:	+9.5 VDC @ 160 mA

THEORY OF OPERATION

GENERAL

The FE3H040 Preselector amplifies and down converts the RF signal to the IF frequency of 21.4 MHz. The FE3H035 and FE3H045 Preselectors use high-side injection. Power is supplied by a regulated +9.5 volts and draws typically 160 mA.

The FE3H040 Preselector consists of the following:

- Five-Section L-C Coupled Bandpass Filter
- Single Stage Low Noise RF Amplifier
- Image Rejection Filter
- Local Oscillator Low Pass Filter
- Double Balanced Active Mixer

All terminations are 50 Ω impedance.

POWER AND INTERCONNECTION

The FE3H Enhanced Preselector operates from +9.5 VDC applied via a short red wire connected to supply point J6-2 on the receiver main IF / audio board. Ground return is supplied via direct mounting to the receiver chassis and coaxial cable interconnections. The FE3H Preselector draws approximately 160 mA from the IF / audio board's +9.5 VDC supply.

The RF input signal connected to the receiver front panel Type-N connector is fed to the Preselector SMB input connector J1 by a short coaxial cable. The FE3H Preselector's local oscillator input and IF output are respectively routed by coaxial cable from the local oscillator module and to SMB connector J7 on the main IF / audio board.

PRESELECTOR FILTER

The received RF signal is filtered by a five-section L-C coupled band pass filter. This filter provides Preselector selectivity and attenuates any potential internally generated spurious signals. The filter has an operational bandwidth of 5 MHz and a typical insertion loss of 2 dB. The filter is tunable (L1 through L5) in the following ranges :

- FE3H035 29.0 MHz 38.5 MHz
- FE3H045 37.5 MHz 50.0 MHz

Every Enhanced Preselector has an identification label indicating one of the two operating frequency bands.

RF AMPLIFIER

The output from the Enhanced Preselector filter is coupled through DC blocking capacitor C8 to the base of RF amplifier Q2. The RF amplifier stage is supplied by the regulated +9.5 VDC line and typically draws 60 mA of collector current. It provides a high third-order intercept point and low noise figure. Transistor Q1 actively regulates the bias to RF transistor Q2. The output signal is coupled to an image rejection filter via DC blocking capacitor C10. Typically, the RF amplifier stage has a gain of 16 dB.

IMAGE REJECTION FILTER

The amplified RF signal is followed by an image rejection filter. This filter rejects image noise after amplification. The low pass filter consists of C11 through C14 and L3 through L5. It is a low pass filter designed to pass the desired frequency range of 29.0 MHz – 50.0 MHz and reject the image band of 71.8 MHz – 92.8 MHz. Typical insertion loss is 1.5 dB.

LOCAL OSCILLATOR FILTER

The local oscillator filter is a low pass filter consisting of C34 through C37 and L10 through L12. Typical insertion loss is 1.5 dB. Input level to the local oscillator filter is typically +5 dBm. Following the filter is an attenuation network with an insertion loss of 7.5 dB.

DOUBLE BALANCED MIXER

The double balanced mixer consists of active mixer M1. The received RF signal in the 29.0 MHz – 50.0 MHz range is down converted to the 21.4 MHz first conversion IF frequency by the use of high-side injection. The mixer is driven by an LO signal of typically -4 dBm. Typical current draw for the mixer is 100 mA. Typical conversion loss is 0 dB.

ENHANCED PRESELECTOR ALIGNMENT

REPAIR NOTE

The Enhanced Preselector is mainly made up of surface mount devices that should not be removed or replaced using an ordinary soldering iron. Removal and replacement of surface mount components should be performed only with specifically designed surface mount rework and repair stations complete with Electrostatic Discharge (ESD) protection.

When removing Surface Mount Solder Jumpers, the recommendation is to use solder braid in place of manual vacuum type desoldering tools. This will help prevent damage to the circuit boards.

GENERAL

Alignment for the Enhanced Preselector consists of tuning the five section bandpass filter only. No tuning is required for frequency changes within the 3 dB bandwidth (5 MHz) of its originally tuned frequency. However, without tuning at the 3 dB band edges, the receivers sensitivity will be degraded. Normally, no tuning is required for small frequency changes. For large frequency changes, use the tuning procedure below.

RECOMMENDED TEST EQUIPMENT

Alignment of the Enhanced Preselector requires the following test equipment or its equivalent:

Power Supply:	Regulated +9.5 VDC at 1 A Phillips PM 2811
Spectrum Analyzer with Tracking Generator	
Alignment Tool:	Coilcraft 37-1409

CHECK POINTS

Vsupply:	+ 9.5 VDC @ 160 mA
Bandpass Filter Loss:	2 dB
RF Amplifier Gain:	16 dB
Image Rejection Filter Loss:	1.5 dB
First Mixer Conversion Loss:	0 dB
Vb of Q1:	+ 7 VDC
Vc of Q2:	+ 7.5 VDC
Vp of M1:	+ 9.3 VDC
Local Oscillator Frequency:	RF Frequency + 21.4 MHz
Local Oscillator Filter Loss:	1.5 dB
Local Oscillator Attenuator Loss:	7.5 dB

PREFERRED TUNING PROCEDURE

The preferred method of tuning the Enhanced Preselector is to use a Spectrum Analyzer with a Tracking Generator. With the Local Oscillator absent, the frequency response of the Preselector filter can be seen at the IF port.

Use the following procedure for swept frequency tuning:

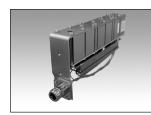
- 1. Supply +9.5 VDC to the Enhanced Preselector.
- 2. Connect the Tracking Generator output with -10 dBm or less to the RF input.
- 3. Connect the IF output to the Spectrum Analyzer input.
 - a. Center the spectrum analyzer at the desired RF frequency.
 - b. Adjust L1 through L5 for a uniformly flat response at a level typically -30 dBc; centered at the desired RF frequency. See the Enhanced Preselector Tuning Diagram in the Illustrations section of this manual.

ALTERNATE TUNING PROCEDURE

The alternate method of tuning the Enhanced Preselector is to use a complete receiver and monitor receiver SINAD. Use the following procedure for tuning:

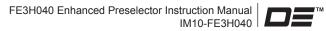
- 1. Inject the desired RF signal to the RF IN connector at a level of -20 dBm.
- Inject the desired LO signal to the LO IN cable at a level of +5 dBm (LO freq = RF + 21.4 MHz).
- 3. Connect the IF OUT to the IF / RF IN connector on the IF / Audio Board.
- 4. Adjust L1 through L5 and tune for best receiver SINAD (> -118 dBm).

ENHANCED PRESELECTOR REMOVAL AND INSTALLATION

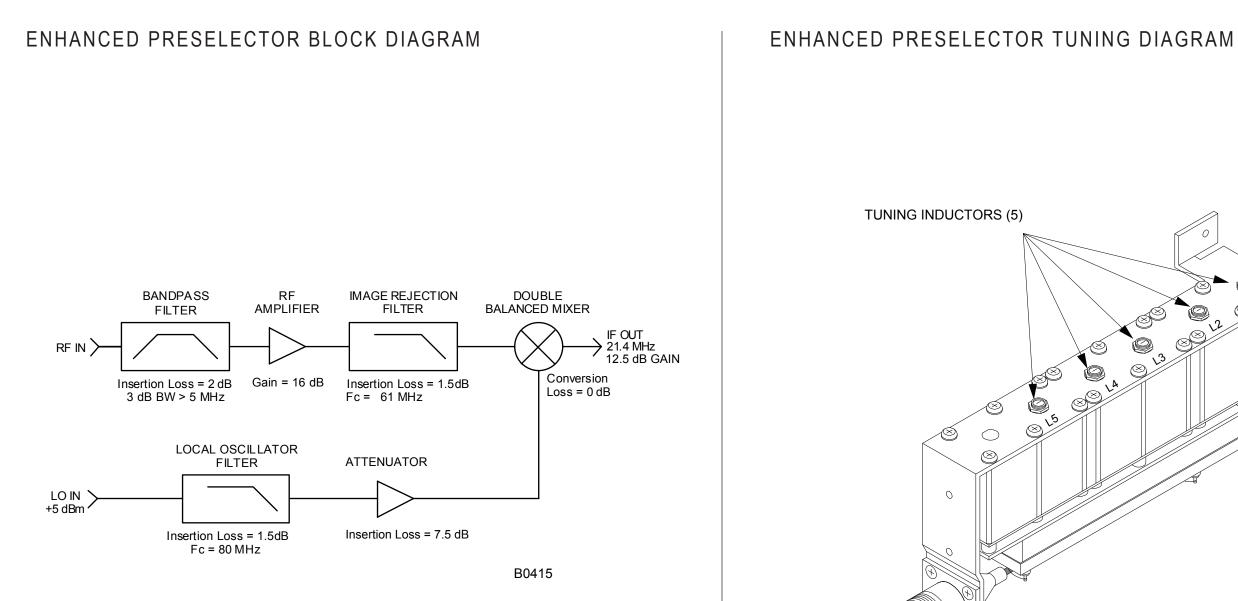

The Enhanced Preselector is fastened to the mainboard (MT-3 Receiver IF / Audio Board) with a single Phillips screw and fastened to the front panel with two countersunk Phillips screws. Remove these screws and disconnect the IF, LO and power cables to remove the Enhanced Preselector. Installation of the Enhanced Preselector is the reverse of the above procedure.

CIRCUIT BOARD REMOVAL

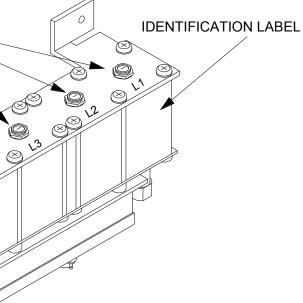
Removal of the circuit boards is accomplished by removing all 18 Phillips screws and lockwashers. To separate the two circuit boards from each other, the small piece of semi-rigid coax must be desoldered. Follow a reverse procedure to re-assemble.

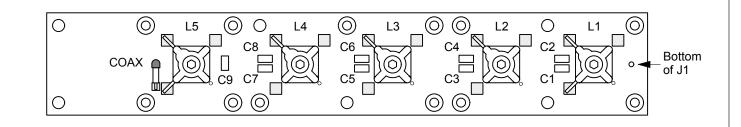

9

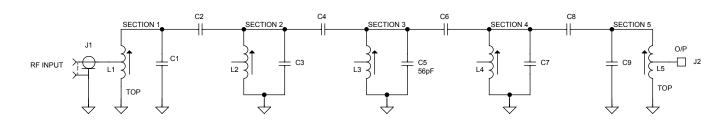
ILLUSTRATIONS AND SCHEMATICS


PRINTED CIRCUIT BOARD NUMBERING CONVENTION

Daniels Electronics Ltd. has adopted a printed circuit board (PCB) numbering convention in which the last two digits of the circuit board number represent the circuit board version. All PCBs manufactured by Daniels Electronics Ltd. are identified by one of the following numbering conventions:


PCB number	43-9120 <u>10</u> Indicates circuit board version 1.0
PCB number	50002- <u>02</u> Indicates circuit board version 2 (no decimal version)

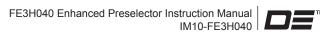




B0416

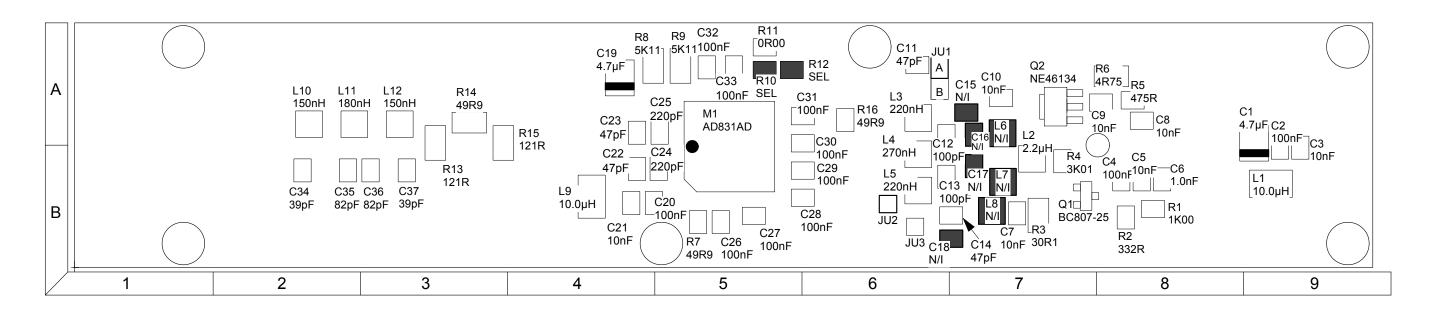
BANDPASS FILTER COMPONENT LAYOUT

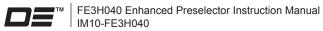
BANDPASS FILTER SCHEMATIC DIAGRAM


	FE3H035	FE3H045	
Designator	29.0 - 38.5 MHz	37.5 - 50.0 MHz	
C1	82 pF	68 pF	
C2	15 pF	10 pF	
C3	68 pF	56 pF	
C4	12 pF	8.2 pF	
C5	82 pF	68 pF	
C6	12 pF	8.2 pF	
C7	68 pF	56 pF	
C8	15 pF	10 pF	
C9	82 pF	68 pF	

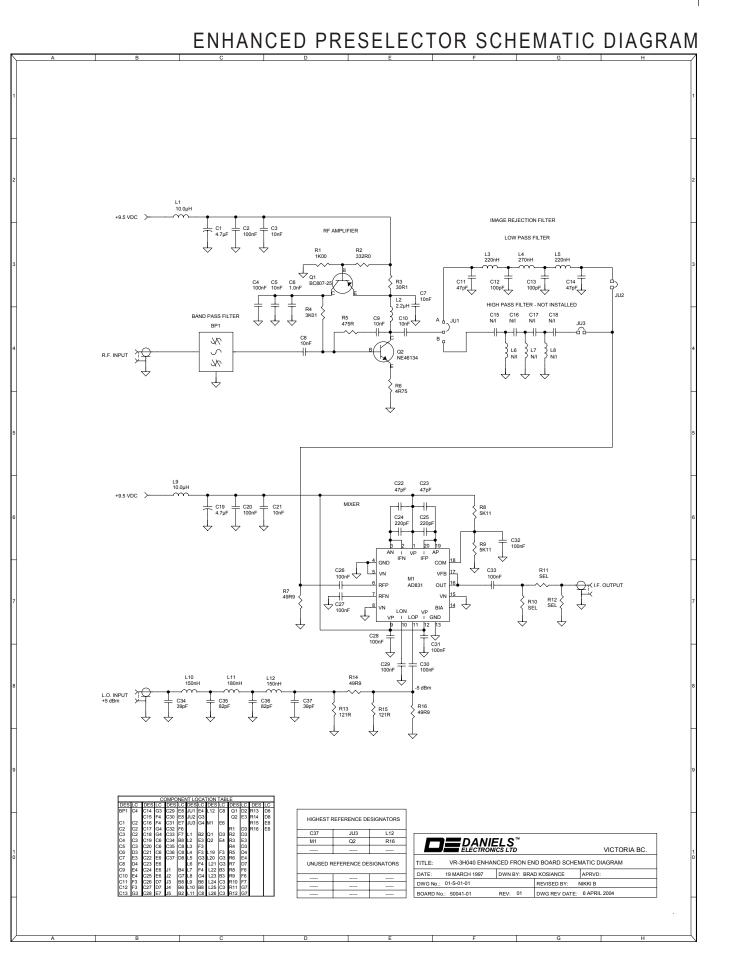
Designator	Low Band (Blue) High Band (Green			
L1	193-306 nH (Tapped)	162-252 nH (Tapped)		
L2	193-306 nH	162-252 nH		
L3	193-306 nH	162-252 nH		
L4	193-306 nH	162-252 nH		
L5	193-306 nH (Tapped)	162-252 nH (Tapped)		

Designator	FE3H035 29-38.5 MHz	FE3H045 37.5-50 MHz	
C1	82 pF	68 pF	
C2	15 pF	10 pF	
C3	86 pF	56 pF	
C4	12 pF	8.2 pF	
C5	82 pF	68 pF	
C6	12 pF	8.2 pF	
C7	68 pF	56 pF	
C8	15 pF	10 pF	
C9	82 pF	68 pF	
L1	193-306 nH	162-252 nH	
L2	193-306 nH	162-252 nH	
L3	193-306 nH	162-252 nH	
L4	193-306 nH	162-252 nH	
L5	193-306 nH	162-252 nH	


HIGHEST REFERENCE DESIGNATORS				
C9	L5			
UNUSED REFERENCE DESIGNATORS				



ENHANCED PRESELECTOR COMPONENT LAYOUT



COMPONENT LOCATION TABLE						
DES_LC	DES	LC	DES	LC	DES	LC
C1 A9 C2 B9 C3 B9 C4 B8 C5 B8 C6 B8 C7 B7 C8 A8 C9 A8 C10 A7 C11 A6 C12 A6 C13 B6 C14 B7 C15 A7 C16 A7 C17 B7 C18 B7 C19 A4 C20 B4	C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 JU1 JU2	B4 B4 A4 B5 B5 B6 B6 A6 A5 B2 B3 B3 A6 B6	JU3 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 Q1 Q2	B6 B9 B7 A6 B6 B6 A7 B7 B7 B7 A2 A3 A5 B7 A7	R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16	B8 B8 B7 B7 A8 A6 B5 A5 A5 A5 A5 A5 A3 A3 A3 A6

- INSTALL JUMPERS
- NOT INSTALLED

PARTS LIST

ENHANCED PRESELECTOR BOARD ELECTRICAL PARTS

Designator	scription Part Number			
C1	CAP., SM, 4.7uF TANT., 10%,16V	1055-5B475K16		
C2	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		
C3	CAP., SM,10nF CER,0805,X7R,50V	1008-4A103K5R		
C4	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		
C5	CAP., SM,10nF CER,0805,X7R,50V	1008-4A103K5R		
C6	CAP., SM, 1nF CER,0805,X7R,50V	1008-3A102K5R		
C7	CAP., SM,10nF CER,0805,X7R,50V	1008-4A103K5R		
C8	CAP., SM,10nF CER,0805,X7R,50V	1008-4A103K5R		
C9	CAP., SM,10nF CER,0805,X7R,50V 1008-4A103K5R			
C10	CAP., SM,10nF CER,0805,X7R,50V 1008-4A103K5R			
C11	CAP., SM, 47pF CER., 0805, C0G	1008-1A470J1G		
C12	CAP., SM, 100pF CER., 0805,C0G	1008-2A101J1G		
C13	CAP., SM, 100pF CER., 0805,C0G	1008-2A101J1G		
C14	CAP., SM, 47pF CER., 0805, C0G	1008-1A470J1G		
C19	CAP., SM, 4.7uF TANT., 10%,16V	1055-5B475K16		
C20	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		
C21	CAP., SM,10nF CER,0805,X7R,50V	1008-4A103K5R		
C22	CAP., SM, 47pF CER., 0805, C0G	1008-1A470J1G		
C23	CAP., SM, 47pF CER., 0805, C0G	1008-1A470J1G		
C24	CAP., SM, 220pF CER., 0805,C0G	1008-2A221J1G		
C25	CAP., SM, 220pF CER., 0805,C0G	1008-2A221J1G		
C26	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		
C27	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		
C29	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		
C30	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		
C31	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R		

Enhanced Preselector Board Electrical Parts (Continued)

Reference Designator	Description	Part Number	
C32	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R	
C33	CAP., SM,100nF CER,0805,X7R,50	1008-5A104K5R	
C34	CAP., SM, 39pF CER., 0805, C0G	1008-1A390J1G	
C35	CAP., SM, 82pF CER., 0805, C0G	1008-1A820J1G	
C36	CAP., SM, 82pF CER., 0805, C0G	1008-1A820J1G	
C37	CAP., SM, 39pF CER., 0805, C0G	1008-1A390J1G	
001			
L1	INDUCTOR, SM, 10.0uH, 10%,1812	1255-4G10000K	
L2	INDUCTOR,SM,2.2uH CER,10%,1008	1256-3B2R200K	
L3	INDUCTOR,SM,220nH CER,10%,1008	1256-2BR2200K	
L4	INDUCTOR, SM, 270nH CER, 10%, 1008	1256-2BR2700K	
L5	INDUCTOR,SM,220nH CER,10%,1008	1256-2BR2200K	
L9	INDUCTOR, SM, 10.0uH, 10%,1812	1255-4G10000K	
L10	INDUCTOR,SM,150nH CER,10%,1008	1256-2BR1500K	
L11	INDUCTOR,SM,180nH CER,10%,1008	1256-2BR1800K	
L12	INDUCTOR,SM,150nH CER,10%,1008	1256-2BR1500K	
M1	IC, AD831AP, MIXER-L/D, PLCC20	2360-83100P20	
PCB	PCB, FRONT END AMP/MIX.,LB VHF	4310-72500411	
Q1	TRANSISTOR, BC807-25, PNP, SOT23	2120-BC807025	
Q2	TRANSISTOR, NE46134, RF,SOT-89	2127-NE461340	
R1	RES., SM, 1K00 0805, 1%,100ppm	1150-3A1001FP	
R2	RES., SM, 332R 0805, 1%,100ppm	1150-2A3320FP	
R3	RES., SM, 30R1 1206, 1%,100ppm	1150-1B30R1FP	
R4	RES., SM, 3K01 0805, 1%,100ppm 1150-3A3011FP		
R5	RES., SM, 475R 0805, 1%,100ppm	1150-2A4750FP	
R6	RES., SM, 4R75 1206, 1%,400ppm	1150-0B4R75FG	
R7	RES., SM, 49R9 0805, 1%,100ppm	1150-1A49R9FP	
R8	RES., SM, 5K11 1206, 1%,100ppm	1150-3B5111FP	
R9	RES., SM, 5K11 1206, 1%,100ppm 1150-3B5111FP		
R11	RES., SM, ZERO OHM JUMPER,0805	1150-0A0R0000	
R13	RES., SM, 121R 1206, 1%,100ppm 1150-2B1210FP		
R14	RES., SM, 49R9 1206, 1%,100ppm 1150-1B49R9FP		
R15	RES., SM, 121R 1206, 1%,100ppm	1150-2B1210FP	
R16	RES., SM, 49R9 0805, 1%,100ppm	1150-1A49R9FP	

BANDPASS FILTER BOARD ELECTRICAL PARTS

A10-FE3H035 Model

Reference Designator	Description	Part Number		
C1	CAP, 82pF CER,0805,5%,100V,C0G	1008-1A820J1G		
C2	CAP, 15pF CER,0805,5%,100V,C0G 1008-1A150J1G			
C3	CAP, 68pF CER,0805,5%,100V,C0G	1008-1A680J1G		
C4	CAP, 12pF CER,0805,5%,100V,C0G	1008-1A120J1G		
C5	CAP, 82pF CER,0805,5%,100V,C0G	1008-1A820J1G		
C6	CAP, 12pF CER,0805,5%,100V,C0G 1008-1A120J1G			
C7	CAP, 68pF CER,0805,5%,100V,C0G 1008-1A680J1G			
C8	CAP, 15pF CER,0805,5%,100V,C0G 1008-1A150J1G			
C9	CAP, 82pF CER,0805,5%,100V,C0G 1008-1A820J1G			
L1	INDUCT/VAR., 193-306uH, TAP4+3/8	1263-10C06U35		
L2	INDUCTOR/VAR., 193-306nH, UNSHLD	1262-110C250U		
L3	INDUCTOR/VAR., 193-306nH, UNSHLD	1262-110C250U		
L4	INDUCTOR/VAR., 193-306nH, UNSHLD	1262-110C250U		
L5	INDUCT/VAR.,193-306uH,TAP4+3/8	1263-10C06U35		
PCB	PCB, FRONT END/COIL MTG,LB VHF	4310-75500341		

A10-FE3H045 Model

Reference Designator	Description	Part Number
C1	CAP, 68pF CER,0805,5%,100V,C0G	1008-1A680J1G
C2	CAP, 10pF CER,0805,5%,100V,C0G	1008-1A100J1G
C3	CAP, 56pF CER,0805,5%,100V,C0G	1008-1A560J1G
C4	CAP, 8p2 CER, 0805,5%,100V,C0G	1008-0A829J1G
C5	CAP, 68pF CER,0805,5%,100V,C0G	1008-1A680J1G
C6	CAP, 8p2 CER, 0805,5%,100V,C0G 1008-0A829J1G	
C7	CAP, 56pF CER,0805,5%,100V,C0G 1008-1A560J1G	
C8	CAP, 10pF CER,0805,5%,100V,C0G 1008-1A100J1G	
C9	CAP, 68pF CER,0805,5%,100V,C0G	1008-1A680J1G
L1	INDUCT/VAR.,162-252uH,TAP3+3/8	1263-10C05U27
L2	INDUCTOR/VAR.,162-252nH,UNSHLD	1262-110C207U
L3	INDUCTOR/VAR.,162-252nH,UNSHLD	1262-110C207U
L4	INDUCTOR/VAR.,162-252nH,UNSHLD	1262-110C207U
L5	INDUCT/VAR.,162-252uH,TAP3+3/8	1263-10C05U27
PCB	PCB, FRONT END/COIL MTG,LB VHF	4310-75500341

MECHANICAL PARTS

Description	Part Number	Qty.	
BRACKET, CAP. MTG,V/UHF 5P F/E	3702-65001005	1	
CABLE, CONFORM., 30mm/8mm/8mm	7489-C1070200	1	
CABLE, SMB PLUG-OPEN, RG316, 15CM	7910-WP007015	1	
CABLE, SMB PLUG-OPEN, RG316, 19CM	7910-WP008019	1	
CABLE,SMB STR/PL-N(CSK)JK,21CM	7910-WS7NJ021	1	
CASE, LB VHF, RF AMP/HELICAL	3702-65801050	1	
CONN., SMB, JACK, BULKHEAD, REAR	5121-J1SC01BG	1	
LOCKWASHER,M2.5,SPLIT,A2 STEEL	5814-2M5LK00S	18	
NUT, PRESS,M2.5,5.6mmOD,PC MNT	5833-T2M55615	12	
SCREW, M2.5 x 25 PAN/PHIL., A2	5812-2M5PP25S	18	
SCREW, M3 X 6, FLAT/PHIL., A2	5812-3M0FP06S	4	
SHIELD, V/UHF F/E AMP-LO DIVDR	3702-67401412	1	
SHIELD, V/UHF F/E AMP-RF DIVDR	3702-67401413	1	
SHIELD, V/UHF F/END AMP - LID	3702-67401411	1	
SHIELD, V/UHF F/END AMP - WALL	3702-67401410	1	
STANDOFF,5.56mmOD,4mmL,M2.5,SW	5927-5S4BM25T	6	
WIRE, TFE/STRANDED, 24AWG, RED	7121-24S19362	20 cm	

REVISION HISTORY

Revision	Date	Action #	Description
1	July 97		First Issue
1-0-1	Apr 2004		Updated document to new format
1-0-2	Nov 2010		 Preselector Tuning Diagram was captioned with 5 capacitors; changed to 5 inductors [Task 3622]. "Front End" is now "Preselector" updated logos and trademark information applied Daniels Style Guide

